Прямоугольный треугольник, гипотенуза которого 10 см,а один из катетов 6 см,вращается вокруг этого катета.Площадь боковой поверхности тела вращения равна?
Пусть х см - одна часть. Тогда стороны треугольника равны 5х см, 12х см и 13х см соответственно. Исходя из всех условий, составим уравнение 5x = 13x - 1,6 8x = 1,6 x = 0,2 Значит, одна часть равна 0,2 см.
Теперь найдём все стороны: 0,2*5см = 1 см 0,2*12см - 2,4 см 0,2*13см = 2,6см
Найдем косинус большего угла: (2,4² +1 - 2,6²)/2*2,6*2,4 = (5.76 + 1 -6,76)/2*2,6*2,4 = 0 Значит, больший угол треугольника равен 90°. Тогда данный треугольник - прямоугольный => Его площадь равна половине произведения его катетов. S = 1/2*2,4*1см² = 1,2 см². ответ: S = 1,2 см².
Вообщем. Из всех данных рассмотрим треугольник CDB. Он прямоугольный, его сторона DB=AD, так как CD делит AB пополам, от сюда следует, что DB равно 6 см. Теперь найдём гипотенузу этого треугольника. Угол DCB равен 30 градусам, так написано в дано. Вспоминаем волшебную теоремку, что катет лежащий на против угла в 30 градусов равен половине гипотенузы. У нас катет на против этого угла равен 6 см, значит гипотенуза равна 12 см, а от сюда мы можем посчитать периметр, так, как противолежащие стороны параллелограмма равны, получается 12+12+12+12=48. ответ: Р=48 см.
5x = 13x - 1,6
8x = 1,6
x = 0,2
Значит, одна часть равна 0,2 см.
Теперь найдём все стороны:
0,2*5см = 1 см
0,2*12см - 2,4 см
0,2*13см = 2,6см
Найдем косинус большего угла:
(2,4² +1 - 2,6²)/2*2,6*2,4 = (5.76 + 1 -6,76)/2*2,6*2,4 = 0
Значит, больший угол треугольника равен 90°. Тогда данный треугольник - прямоугольный => Его площадь равна половине произведения его катетов.
S = 1/2*2,4*1см² = 1,2 см².
ответ: S = 1,2 см².