1. Углы при основании равнобедренного треугольника равны. Значит углы треугольника пропорциональны числам 2:2:5 или 2:5:5. Если х- одна часть, то для решения задачи составим уравнения 2х+2х+5х=180 или 2х+5х+5х =180. 9х=180 12х=180 х=20 х=15 углы 40°,40°,100° углы 30°,75°75°.
2. Сумма внешних углов многоугольника,взятых по одному при каждой вершине, равна 360°. Значит, третий из внешних углов равен 360-200=160°. Угол, смежный с ним, 20°. Второй острый угол равен 90-20 = 70°. ответ: углы треугольника 20°,70°,90.
Проекция ребра SA на плоскость будет OA (SO ┴ (ABCDEF) и равна радиусу описанной около основания (здесь правильного шестиугольника) , что свою очередь равна сторону шестиугольника a₆ = R =acosα ; SO =H =asinα . Vпир =1/3*Sосн*H =1/3*6*√3/4*(acosα)²*asinα =(√3/2)*cos²α*sinα*a³ . При α=60° ; a= 2 получаем : Vпир = (√3/2)*1/4*(√3/2*8 =3/2. Апофема пирамиды является образующий конуса Vкон =1/3*π*r² *H r = (√3/2)*R =(√3/2)*acosα. Vкон =1/3*π*((√3/2)*acosα)*asinα =.(π/4)*cos²α*sinα*a³ . Получилось Vкон = ( π/2√3) *Vпир . При α=60° ; a= 2 получаем : Vкон =( π/2√3)*3/2 =π√3/6.
L =√(a² - (R/2)² =√(a² -(1/2*acosα)²) =a/2*√(4 - cos²α) ;
Пусть угол С - 3х, угол В - 5Х, угол А - (180-8Х)
Составлю уравнение:
(180-8Х) = 5Х-3Х+80
Раскроем скобки и посчитаем подобные:
180-8Х = 2Х+80
10Х = 100
Х = 10.
Угол С = 30⁰, угол В = 50⁰, угол А = 100⁰.
Высота АD образует прямоугольный треугольник с углами 30⁰, 90⁰ и соответсвенно - 60⁰.
Значит, высота AD разбивает угол А на углы 60⁰ и (100-60) = 40⁰