Доказательство в объяснении.
Объяснение:
AE перпендикулярна СК, так как СК перпендикулярна BC (дано), а ВС параллельна AD.
CF перпендикулярна AК, так как АК перпендикулярна АВ (дано), а АВ параллельна СD). Следовательно, точка D - точка пересечения высот треугольника АКС.
В треугольнике АКС высота из вершины К также проходит через точку D, так как все высоты треугольника пересекаются в одной точке.
DM - перпендикулярна АС (дано), а так как из одной точки (D) на прямую (АС) можно опустить единственный перпендикуляр, следовательно точка К, принадлежащая перпендикуляру (высоте) к стороне АС, прохожящему через точку D, лежит на прямой MD, что и требовалось доказать.
Примем дугу ЕКН за х
Тогда дуга ЕАН=х+90
В сумме эти две дуги составляют 360 градусов.
х+х+90=360
2х=360-90
2х=270
х=135
х+90=135+90=225
Вписанный угол ЕАН опирается на дугу, равную 135 градусов. Он равен половине центрального угла, опирающегося на ту же дугу
135:2=67,5
Вписанный угол ЕКН опирается на дугу, равную 225 градусов.
Он равен половине центрального угла, опирающегося на ту же дугу и равен
225:2=112, 5
Вписанный угол ЕКА опирается на дугу 180 градусов, и равен половине центрального угла 180 градусов
180:2=90
угол ЕАН=67,5ᵒ
угол ЕКН=112, 5ᵒ
угол ЕКА=90ᵒ
сумма выпуклого четырехугольника находится по формуле (n-2)*180. сумма равна 360