М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ilias1924
ilias1924
30.08.2021 09:37 •  Геометрия

Два ребра прямоугольного параллелепипеда выходящие из одной вершины, равны 12 и 12. диагональ параллепипеда равна 18. найдите площадьповерхности параллепипедпа.

👇
Ответ:
galina7257
galina7257
30.08.2021

квадрат диагонали грани, содержащей стороны 12 и 12 равна 12^2+12^2=288

теперь высота h, диагональ 288 и сторона 18 в прямоуг треугольнике. узнаем неизвестный катет   sqrt(18^2-288)=6 - это высота

считаем площадь s=6*12*4+6*6*2=360

4,6(15 оценок)
Ответ:
olesya8262
olesya8262
30.08.2021

Надеюсь, что все будет видно. Получилось 576


Два ребра прямоугольного параллелепипеда выходящие из одной вершины, равны 12 и 12. диагональ паралл
4,5(97 оценок)
Открыть все ответы
Ответ:
dima19820325
dima19820325
30.08.2021
Сначала построим линию пересечения плоскости основания и плоскости А1С1Е. Это прямая а, параллельная отрезкам АС и А1С1  (смотри рисунок).
Высоту призмы находим ао Пифагору из треугольника: высота(катет)-сторона основания(катет)-диагональ грани(гипотенуза).
Высота призмы равна √(5²-4²)=3.
Диагональ ВЕ основания равна диаметру описанной вокруг правильного шестиугольника окружности, то есть ВЕ=2*4=8.  Тогда КЕ=6.
Двугранный угол между плоскостями равен углу образованному прямыми РЕ и КЕ, лежащими в соответствующих плоскостях и перпендикулярными линии а пересечения плоскостей. В прямоугольном треугольнике РКЕ тангенс искомого угла равен отношению противолежащего катета к прилежащему: РК/КЕ=3/6=1/2.
ответ: искомый угол равен arctg(0,5).
Вариант2 (координатный).
Введем систему координат X,Y,Z с началом координат в точке С.
Находим по Пифагору отрезок СК=С1Р=√(16-4)=2√3.
Получаем координаты точек: Р(0;3;2√3), К(0;0;2√3), E(6;0;2√3). Вычисляем
координаты векторов (от координат КОНЦА отнять соответствующие координаты НАЧАЛА) РE{6;-3;0} и KE{6;0;0}.
Найдем угол между векторами РЕ и КЕ по формуле
cosα=(x1*x2+y1*y2+z1*z2)/[√(x1²+y1²+z1²)*√(x2²+y2²+z2²)]
cosα=(36+0+0)/[√(36+9+0)*√(36+0+0)]=36/18√5 = 2/√5.
ответ: искомый угол равен arccos(2/√5).
Но если нужен ответ через тангенс, найдем его. Sinα=√(1-cos²α) = 1/√5.
Тогда tgα=Sinα/Cosα =1/2.
ответ: искомый угол равен arctg(0,5).
Вариант3. Еще более усложним решение (по условию задающего).
Введем систему координат X,Y,Z с началом координат в точке С.
Тогда получаем координаты точек: А1(0;3;4√3),  C1(0;3;0), E(6;0;2√3).
Общее уравнение плоскости имеет вид Ax+By+Cz+D=0.
Уравнение плоскости основания Х0Z имеет вид: Y=0.
Уравнение плоскости А1С1Е (она параллельна координатной оси 0Z) имеет вид: Ax+By+D=0. 
Составим уравнение плоскости по трем точкам, используя формулу:
|x-0      0-0        6-0       |                       |   x-0     0      6      |
|y-3      3-3        0-3       |  =  0.     Или    |   y-3      0     -3    |  = 0.
|z-4√3  0-4√3   2√3-4√3 |                       | z-4√3  -4√3  -2√3 |
Раскрываем определитель по первому столбцу, находим уравнение плоскости:
         |  0    -3   |              |   0     6   |                 | 0     6 |
(x-0)* |-4√3 -2√3|  -  (y-3)* |-4√3 -2√3 | +  (z-4√3)*| 0    -3 | =0. 

Отсюда 12√3*(x-0)-24√3*(y-3)+0*(z-4√3)=0. 12√3*x-24√3*y+72√3=0 или x-2y+6=0.
Это и есть уравнение плоскости А1С1Е.
Если плоскость задана общим уравнением x-2y+6=0, то вектор n1{1;-2;0} является вектором нормали данной плоскости.
Вектором нормали плоскости основания является вектор n2{0;1;0}.
Угол между плоскостями можно найти через угол между нормальными векторами данных плоскостей.
cosα=(0-2+0)/[√(1+4+0)*√(0+1+0)]  или cosα=-2/√5.
Получили ТУПОЙ угол, но поскольку плоскости при пересечении образуют две пары вертикальных углов, за угол между плоскостями обычно принимают острый угол, поэтому принимаем  cosα=2/√5 (так как
cos(180-α)=-cosα).
ответ, как и во втором варианте:
искомый угол равен arccos(2/√5) или arctg(0,5).

Вправильной шестиугольной призме abcdefa1b1c1d1e1f1 сторона основания равна 4, а диагональ боковой г
4,4(45 оценок)
Ответ:
vladalogunova
vladalogunova
30.08.2021

МД₁=6

Объяснение:

Искомым расстоянием от точки пересечения медиан М, до плоскости π является отрезок МД₁.

Обозначим высоты от стороны АС к плоскости π: В₁К, АЕ, СЕ₁. Соединим точки Е и Е₁. Получим трапецию ЕАСЕ₁. В₁К || АЕ || СЕ, так как они перпендикулярны плоскости π. По теореме Фалеса если параллельные прямые, пересекая стороны угла отсекают равные отрезки на одной его стороне, то они отсекают равные отрезки и на второй стороне угла, поэтому если АВ₁=В₁С, то ЕК=КЕ₁. → В₁К – средняя линия трапеции ЕАСЕ₁.

В₁К=(ЕА+Е₁С)÷2=(2+5)÷2=7÷2=3,5

Проведём перпендикуляры В₁Н и КК₁ к стороне ВК₁, получили трапецию В₁КК₁В.

В₁Н делит ВК₁, что К₁Н=В₁К=3,5, тогда ВН=11–3,5=7,5.

Рассмотрим ∆ВВ₁Н, он прямоугольный, ВН и В₁Н – катеты, ВВ₁ – гипотенуза. Медианы треугольника, пересекаясь, точкой пересечения делятся на отрезки в отношении 2 : 1, начиная от вершины треугольника, поэтому ВМ : МВ₁=2 : 1 и по теореме Фалеса ДН : В₁Д=2 : 1. МД || ВН, и МД отсекает от ∆ВВ₁Н подобный ему ∆МВ₁Д. Стороны ∆ВВ₁Н имеют 3 части (2+1=3), а стороны ∆МВ₁Д – одну часть. Пусть МД=х, запишем пропорцию:

МД : ВН=1 : 3

Произведение крайних членов пропорции равно произведению средних:

МД•3=ВН•1

3х=7,5•1

3х=7,5

х=7,5÷3

х=2,5

ДД₁=В₁К=НК₁=3,5

МД₁=МД+ДД₁=2,5+3,5=6


Треугольник ABC расположен в пространстве так, что расстояние от A до плоскости π равно 2, от B до п
4,4(19 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ