М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ева19961
ева19961
15.04.2022 16:32 •  Геометрия

Найти площадь сектора, ограниченной дугой окружности и стягивающей ее хордой, если длина хорды рана 8 под корнем 2 см, а градусная мера дуги равна 30 градусов

👇
Ответ:
terentevvadim33
terentevvadim33
15.04.2022

Сразу поправлю: часть круга, ограниченная дугой и её хордой называется сегментом.
Его площадь равна площади сектора минус площадь треугольника AOB.
обозначения: точка O -центр круга;   точки A, B -концы хорды
H -длина хорды (как я понял, равна  8\sqrt{2} см)
α -центральный угол AOB (для удобства в формулах)
Считать будем округлённо (если выразить ответ точно, то получится кучка дробей и радикалов).

В равнобедренном треугольнике AOB проведём высоту (пройдёт от точки O до центра хорды). Получим два прямоугольных треугольника-  их гипотенуза равна радиусу круга, острый угол равен половине угла α. В прямоугольном треугольнике синус острого угла равен отношению противолежащего катета к гипотенузе. Используя это, выразим и найдём радиус:
R = \frac{H/2}{\sin (\alpha /2)} \approx 21,8564\ cm
Найдём площадь сектора:
S_{sect} = \frac{\pi R^{2} \alpha }{360} \approx 125,062\ cm^{2}
Найдём площадь равнобедренного треугольника AOB по формуле:
S_{treug} = \frac{H}{2} \sqrt{R^{2}-\frac{H^{2}}{4}}\approx 119,426\ cm^{2}
И, наконец найдём площадь сегмента:
S_{segm} = S_{sect}-S_{treug}= 5,636\ cm^{2}

4,4(76 оценок)
Открыть все ответы
Ответ:
ilonazin03
ilonazin03
15.04.2022

Добавляешь угол 6, вертикальный с углом 5, угол 7 смежный с углом 1(он должен быть слева) и отмечаешь левую секущую буквой с, а правую буквой с с индексом 1

/_(значок угла)

1./_5=/_6=80°(по свойству вертикальных углов)

2. /_6 и /_4 - равные накрест лежащие углы, образованные секущей c при прямых a и b, а значит a || b по 1-му признаку параллельности прямых (если накрест лежащие углы равны, то прямые параллельны, возможно у вас это другой по счёту)

3./_3=/_7=180° (свойство параллельных прямых)

4./_1=180°-/_7=180°-125°=55°(свойство смежных углов)

5./_2=180°-/_3=180°-125°=55°(свойство смежных углов)

6. /_1-/_2=55°-55°=0°

Не знаю почему так получилось, вроде всё правильно делал

4,6(74 оценок)
Ответ:
hard26
hard26
15.04.2022

Билет 1.

1. Точка и прямая - основные фигуры на плоскости. Они не имеют определения. Точка не имеет размеров (длины, ширины, радиуса). Точки обозначаются заглавными латинскими буквами.

Прямая бесконечна. Ее можно представить как туго натянутую нить, бесконечную в обе стороны. На рисунке изображается часть прямой. Прямая обозначается по названию двух точек, лежащих на ней, или строчной латинской буквой.

Отрезок - это часть прямой, ограниченная точками с двух сторон. Точки, ограничивающие отрезок, называются его концами. Отрезок имеет длину. Отрезок обозначается двумя заглавными латинскими буквами - по названию его концов.

2. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Доказательство.  Построим треугольник А₁В₁С₁, совместив равные стороны АС и А₁С₁ данных треугольников, как на рисунке, так, чтобы вершины В и В₁ оказались по разные стороны от прямой АС.

Тогда ΔВАВ₁ равнобедренный и значит ∠1 = ∠2 как углы при основании равнобедренного треугольника,

ΔВСВ₁ равнобедренный и ∠3 = ∠4, ⇒

∠АВС = ∠АВ₁С и значит ΔАВС = ΔА₁В₁С₁ по двум сторонам и углу между ними.

Билет 2.

1. В зависимости от вида углов треугольники бывают:

остроугольные (все углы острые);прямоугольные (один угол прямой);тупоугольные (один угол тупой);

В зависимости от сторон:

разносторонние (нет равных сторон);равнобедренные (две стороны равны);равносторонние (все стороны равны).

2. Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

Дано: с∩а, c∩b, ∠1 = ∠2.

Доказать: a║b.

Доказательство:

∠3 = ∠1 как вертикальные,

∠2 = ∠1 по условию, значит

∠3 = ∠2, а эти углы - накрест лежащие при пересечении прямых а и b секущей с, значит а║b по первому признаку параллельности прямых (по накрест лежащи углам).

4,4(82 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ