9 см
Объяснение:
Задание
Хорда CD длиной 13 см пересекает хорду АВ в точке N, BN=3 см, AN=12 см, CN меньше ND. Найти длину ND
Решение
Теорема: хорды точкой пересечения делятся на отрезки, произведения которых равны.
BN · AN = 3 · 12 = 36
Пусть CN = х₁ , ND = х₂.
Составим систему уравнений и найдём ND:
х₁ + х₂ = 13 (1)
х₁ · х₂ = 36 (2)
Из уравнения (1) выразим х₂ и подставим в уравнение (2):
х₂ = 13 - х₁
х₁ · (13 - х₁) = 36
13х₁ - х₁² - 36 = 0
х₁² - 13х₁ + 36 = 0
х₁ = 6,5 - √(6,5²-36) = 6,5 - 2,5 = 4
СN = 4 см
х₂ = 6,5 + √(6,5²-36) = 6,5 + 2,5 = 9
ND = 9 см
ответ: ND = 9 см
Вписанная в ромб окружность делит его сторону на отрезки 4,5 см и 2 см. Вычисли длину вписанной в ромб окружности (π=3,14).
(ответ округли до сотых.)
Объяснение:
Пусть ABCD-ромб, точка O – это центр вписанной окружности , F — точка касания окружности со стороной ромба AB.
Тогда ОF⊥ АВ, по свойству касательной, AF=4,5 см , BF=2 см.
Δ ВОА-прямоугольный ( диагонали ромба взаимно-перпендикулярны)Т.к. высота в прямоугольном треугольнике есть среднее пропорциональное между проекциями, то
r=ОF=√BF*FA,
r=√(4,5*2)=√9=3 (см).
Длина окружности С=2пr
С=2•3,14•3= 18,84 ( см).
знаешь что ? геометрию мы не проходили ♂️