Пусть есть пирамида SABCD. Так как пирамида правильная, в основании лежит квадрат ABCD со стороной 14 см. Основание высоты пирамиды совпадает с центром квадрата. Боковые грани равнобедренные треугольники. Высота боковой грани – апофема. Полная поверхность S = Sбок + Sосн , Sбок = Pl/2 , где Р периметр основания, Sосн = a^2, Sосн = 14·14 = 196 (смˆ2), Р = 4·а = 4·14 = 56 (см). Найдем апофему Рассмотрим треугольник , который образует апофема, высота пирамиды и отрезок, соединяющий основание апофемы и центр квадрата и равен половине стороны квадрата 7 см. Треугольник прямоугольный, отрезок - катет, апофема – гипотенуза , угол 45°, апофема = катет/cos 45° = 7/cos 45° = 7/√2/2 = 7√2 ; Sбок = 56·7√2/2 = 196√2, S = 196√2 + 196 = 196(1 +√2) Смˆ2
Треугольник BAD - равнобедренный с основанием BD, ведь его боковыми сторонами являются AB и AD, а они равны, т.к. все стороны ромба равны. Получается, что AC - биссектриса угла BAD, т.к. диагонали ромба (AC и BD) всегда пересекаются под прямым углом, а это значит, что AC - высота, проведенная к основанию равнобедренного треугольника, а она является также и биссектрисой. Получается, что угол BAD = 2* 28 = 56 градусов. Угол DCB = углу BAD, a угол CBA = углу CDA. => угол CBA = угол CDA = (360 - 2*56)/2 = (360 - 112) /2 = 248/2 = 124 ответ: величина тупого угла = 124 градуса