1. Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны.
периметр треуг. образованного средними линиями в 2 раза меньше периметра основного треуг. Значит периметр основного треуг. = 60 см.
4 + 5 + 6 = 15
60 / 15 = 4
Таким образом стороны основного треугольника 16, 20, 24
А образованного средними линиями 8, 10, 12.
2. Треугольники MNK и ANB подобны по 2 сторонам и углу между ними, а так как медианы в месте пересечения делятся в соотношении 2 / 1 т.е. от вершины 2 / 3 и 1 / 3, то и сторона MK = AB / 2 * 3 = 12 / 2 *3 = 18 см
3. По теореме Пифагора KP = корень (PT^2 + TK^2) = корень (49*3 + 49) = 14 см
тангенс угла K = PT / TK = 7* корень (3) / 7 = корень (3)
угол K = арктангенс (корень (3)) = 60 градусов.
4. Так как BH высота получаем 2 прямоугольных треугольника AHB и CHB, зная один из катетов и противолежащий ему угол находим две составляющих AC.
АН = BH / тангенс ( угла A), HC = BH / тангенс ( угла С )
АС=AH+HC = 4 / тангенс (альфа ) + 4 / тангенс (бета)
5. так как по определению трапеции верхнее и нижнее основания параллельны т.е. NK параллельна MP и EK = KP из условия, то NK является средней линией треугольника MEP. Следовательно MP = 2 * NK = 14 см.
Разность оснований трапеции = 14 - 7 = 7 см.
АН⊥ВС.
АН - проекция МН на плоскость основания, значит, МН⊥ВС по теореме о трех перпендикулярах.
⇒ ∠МНА = 60° - линейный угол двугранного угла между плоскостью МВС и плоскостью основания.
ΔАВН: ∠Н = 90°, АВ = 10, ВН = ВС/2 = 8. По теореме Пифагора:
АН = √(АВ² - ВН²) = √(100 - 64) = √36 = 6
ΔМАН: ∠МАН = 90°,
tg∠AHM = MA/AH
MA = AH · tg∠AHM = 6√3
cos∠AHM = AH/MH
MH = AH/cos∠AHM = 6/(1/2) = 12
ΔMAC = ΔMAB по двум катетам (АВ = АС по условию, МА - общий катет) ⇒ Smac = Smab = 1/2 · MA · AC = 1/2 · 6√3 · 10 = 30√3
Smbc = 1/2 · BC · AH = 1/2 · 16 · 12 = 96
Sбок = Smbc + 2 · Smac = 96 + 2 · 30√3 = 96 + 60√3