Дана равноведренная трапеция АВСД. ВС - меньшее основание, АД - большее основание, АСи ВД - диагонали, пересекаются в т.О. АВ=ВС. Угол АВД=90градусов.
Найти углы трапеции.
угол АВД=углу АСД=90градусов (равенство углов следует из того, что трапеция равнобедренная)
Треугольник АВС равнобедренный, т.к. АВ=ВС. значит угол АВС=углу ВСА.
угол ВСА=углу САД, т.к. они накрест лежащие.
Угол САД=углу ВДА, т.к. треугольник АОД равнобедренный (АО=ОД по св-вам трапеции)
СД=ВС => треугольник ВСД равнобедренный => угол СВД=углу СДВ
Треугольник ВОС равнобедренный, т.к. ВО=ОС (по св-вам трапеции) => угол ДВС=углу ВСА.
Из всего выше сказанного следует, что
углы ВАС, САД, АДС, ВДС, ДВС и ВСА равны. Возьмем их за х.
(а углы АВД и АСД равны 90гр)
получаем ур-ие:
(90+х)+(х+х)+(х+х)+(90+х)=360 (в скобках обозначены отдельные углы)
6х+180=360
6х=180
х=30 градусов
Угол А=углу Д=30*2=60градусов
Угол В=углу С=90+30=120 градусов.
Я немного поправлю предыдущего товарища :))) хотя в общем случае его решение правильное, но в условии все-таки сказано, что боковые стороны равны меньшему основанию, поэтому "предельным снизу" случаем является квадрат, то есть минимальное отношение оснований (отношние большего основания к меньшему, это у предыдущего товарища тоже опечатка) равно 1 (максимальное, само собой, равно 3, когда трапеция "вытягивается" в отрезок). Если отношение оснований меньше 1, то боковые стороны будут равны большему из оснований, а это противоречит условию :)))
На самом деле - это крохоборство :
Угол В=180-угол А-угол С=180-60-80=40
Угол МКВ=180-угол АКМ=180-140=40 (это смежные углы)
Угол МЕВ=180-угол МЕС=180-130=50 (это смежные углы)
МКВЕ-четырехугольник, сумма его углов=360. Тогда КМЕ=360-угол КВЕ(он же угол В)-угол МКВ-угол МЕВ=360-40-40-50=230