Объяснение:Основанием прямой призмы является равнобедренный прямоугольный треугольник. Большая боковая грань-квадрат со стороной 6 корней из 2 см.
а) найдите площадь полной поверхности этой призмы;
б) постройте сечение призмы плоскостью, проходящей через катет нижнего основания и середину противолежащего бокового ребра;
в) вычислите площадь этого сечения;
г) найдите угол между плоскостью сечения и плоскостью нижнего основания;
д) постройте линию пересечения секущей плоскости верхнего основания.
рисунок к задаче 190а) Призма прямая, т.е. её боковые ребра перпендикулярны основаниям. Боковые грани являются прямоугольниками. Площадь прямоугольника равна произведению длин смежных сторон, следовательно, площадь той грани больше, ребра которой больше. Боковые ребра параллелепипеда равны, а в основании самуую большую длину имеет гипотенуза, поэтому большая грань - ABB1A1.
И раз эта грань - квадрат, то все её стороны по 6 корней из 2, в том числе и гипотенуза основания. Пусть АС=ВС=х, из теоремы Пифагора найдем катеты основания и его площадь:
площадь основания
Теперь найдем площади боковых граней, а затем и площадь полной поверхности
нашли полную поверхность
48
Объяснение:
:
Боковая сторона равнобедренного треугольника равна 10, а основание равно 12. Найдите площадь этого треугольника.
Дано:
равнобедренный треугольник АВС,
АВ и ВС — боковые стороны,
АВ = 10,
АС — основание,
АС = 12.
Найти площадь равнобедренного треугольника АВС — ?
Рассмотрим равнобедренный треугольник АВС. Проведем высоту АО. Она является медианой. Следовательно АО = ОС = 12 : 2 = 6.
Рассмотрим прямоугольный треугольник АВО. По теореме Пифагора (квадрат гипотенузы равен сумме квадратов катетов):
АВ^2 = АО^2 + ВО^2;
ВО^2 = АВ^2 - АО^2;
ВО^2 = 100 - 36;
ВО^2 = 64;
ВО = 8.
S АВС = 1/2 * ВО * АС;
S АВС = 1/2 * 8 * 12;
S АВС = 4 * 12;
S АВС = 48.
ответ: 48.
По сумме угол треугольника находим 3й угол:
угол 1+угол 2+угол 3=180
угол 3=180-(22+33)
угол 3=180-55
угол 3=125 градусов