(5) (6) . Сумма всех плоских углов всех граней тетраэдра равна сумме углов четырёх треугольников, т.е. 720o , поэтому, если суммы углов при каждой вершине равны, то каждая из этих сумм равна 180o . Обратное: (6) (5) – очевидно. (4) (8) . Если R – радиус описанной около тетраэдра сферы, r – радиус вписанной сферы и центры этих сфер совпадают (рис.1), то точка касания сферы с каждой гранью лежит лежит внутри этой грани и удалена от каждой вершины треугольника на расстояние , т.е. является центром описанной около этого треугольника окружности радиуса .
(8) (4) . В любом тетраэдре перпендикуляры, опущенные из центра O описанной сферы на грани (рис.1), попадают в центры описанных окружностей, и если радиусы этих окружностей равны R1 , то точка O одинаково удалена от всех граней (на расстояние ), а т.к. все грани – остроугольные треугольники, то O – центр вписанной сферы.
(8) (6) . Если радиусы описанных окружностей граней ABC и DBC тетраэдра ABCD равны, то BAC = BDC , поскольку эти углы острые и опираются на равные дуги BC в равных окружностях (рис.2). Аналогично для всех пар смежных граней. Таким образом,
Тут прежде всего надо понять, что вершина пирамиды равноудалена от ВЕРШИН основания. Поэтому основание высоты пирамиды тоже равноудалено от вершин основания. Поэтому вершина пирамиды проектируется в центр описанной окружности (вокруг основания). Всё это вы можете легко увидеть, если поастроите высоту пирамиды, соедините её основание с вершинами оснований и рассмотрите получившиеся прямоугольные треугольники. Они все имеют общий катет (высоту пирамиды) и одинаковый противолежащий этому катету острый угол. То есть они РАВНЫ. Отсюда и следует все, казанное вначале.
Вот теперь можно приступить к решению.
Радиус окружности, описанной вокруг основания, находится из теоремы синусов.
2*R*sin(135) = a; R = a/(2*sin(135));
Поскольку R - это проекция бокового ребра, которое составляет с плоскостью основания угол 60 градусов, то высота пирамиды H связана с R так
H/R = tg(60);
Отсюда H = a*tg(60)/(2*sin(135)) = a*корень(3/2);