Синус - отношение противол. катета к гипотенузе. ВС/АВ=5/8
Отрезок АВ пересекает плоскость α, следовательно, т.А и т.В расположены по по разные стороны от плоскости.
Через две параллельные прямые можно провести плоскость, притом только одну. АА1 и ВВ1 лежат в одной плоскости, параллельная им ММ1 лежит в той же плоскости. Эта плоскость пересекает плоскость α по прямой А1В1.
Проведем АС║А1В1 и продолжим ММ1 до пересечения с ней в т.К, а ВВ1 - в точке С.
В параллелограмме АА1В1С стороны СВ1=АА1=5, МК параллельна им и равна 5.
В ∆ АВС прямая МК - средняя линия и равна половине ВС.
ВС=ВВ1+СВ1=12
МК=12:2=6
ММ1=МК-М1К=6-5=1 ( ед. длины)
Подробнее - на -
Объяснение:
ответ: 150º
Объяснение:
Отрезки ОА и ОВ - радиусы окружности. Расстояние от точки А до прямой ОВ в два раза меньше радиуса. Найдите дугу АВ.
Вариант а) рис.1
Точка А расположена в той же четверти окружности, что В.
Расстояние от точки до прямой - перпендикуляр. Пусть это перпендикуляр АС.
В прямоугольном треугольнике АОС отрезок АС=0,5 АО. Синус угла АОС=АС:АО=0,5. Это синус угла 30º
Центральный угол окружности равен угловой величине дуги, на которую он опирается. ⇒ дуга АВ=30º
Вариант б) рис.2
Точка А расположена по другую сторону от центра, чем В.
Тогда точно так же найдем величину угла между радиусом ОА и прямой ОВ. Дуга АВ в этом случае равна разности межу развернутым углом ВОС и углом АОС.
дуга АВ=180º-30º=150º
BC/BA=5/8
20/BA=5/8
5BA=20*8
BA=8*4
BA=32
ответ: AB = 32 cм.