Пусть у нас будет треугольник ABC с гипотенузой BC, O - центр вписанной окружности. Проведем радиусы OM и ON к боковым сторонам AB и AC соответственно. Получим четырехугольник с равными смежными сторонами, т.е. - это квадрат. Отрезки касательных равны, т.е. AN=AM=3 см; CN=CF=х см; BM=BF=y. Длина гипотенузы = x+y=17 см. Значит, х=17-y Длины сторон можно связать по теореме Пифагора: AB^2+AC^2=BC^2 (17+3-x)^2+(x+3)^2=17^2 400-40y+x^2+x^2+6y+9=289 2y^2-34x+120=0 y^2-17x+60=0 По теореме Виета найдем корни этого квадратного уравнения: x1+x2=17 x1*x2=60 x1=12; x2=5 - это и есть длины обоих неизвестных касательных, т.к. числа эти взаимозаменяемы. Т.е. дины катетов = 3+12=15 (см) - первый; 3+5=8 (см) - второй, следовательно, P = 17+15+8=40 (см) ответ: 40 см.
1. Две параллельные прямые а и b задают плоскость. Прямая а пересекает плоскость α, значит она пересекает и линию пересечения плоскостей с. Прямые а, b и с лежат в одной плоскости. А в плоскости если одна из двух параллельных прямых пересекает прямую, то и другая прямая ее пересекает. То есть прямая b пересекает прямую с, а значит и плоскость α.
2. Две пересекающиеся прямые задают плоскость, которая пересекает параллельные плоскости по прямым А₁А₂ и В₁В₂. Значит линии пересечения параллельны. ΔРА₁А₂ подобен ΔРВ₁В₂ по двум углам (угол Р общий, ∠РА₁А₂ = ∠РВ₁В₂ как накрест лежащие при пересечении параллельных прямых А₁А₂ и В₁В₂ секущей РВ₁)
Из вершины равнобедренного треугольника проведем биссектрису ВН.
АВ = ВС как боковые стороны равнобедренного треугольника,
∠АВН = ∠СВН, так как ВН биссектриса,
сторона ВН - общая для треугольников АВН и СВН, значит эти треугольники равны по двум сторонам и углу между ними.
Тогда и ∠А = ∠С.