Пусть O1 — центр искомой окружности, x — её радиус, M и N — точки касания с хордами AB и AC, O — центр данной окружности, K — середина AB.
Из прямоугольного треугольника ABC находим, что AВ = 16. Тогда OK = 6, AM = AN = x, а стороны прямоугольной трапеции OO1MK равны:
MK = | 8 - x|, MO1 = x, OK = 6, OO1 = 10 - x.
По теореме Пифагора
(6 - x)2 + (8 - x)2 = (10 - x)2.
Отсюда находим, что x = 8.
△АВС и △DEF.
AB = DE
BC = EF
∠BAC = ∠EDF
Найти:дополнительное условие, при котором △АВС = △DEF
Решение:Обратим внимание, почему изначально △АВС не равен △DEF:
Если две стороны и угол МЕЖДУ ними одного треугольника соответственно равны двум сторонам и углу МЕЖДУ ними другого треугольника, то такие треугольники равны.
К ∠ВАС прилежит только 1 сторона, а именно АВ. А сторона ВС к этому углу вообще никак не относится.
Тоже самое и с ∠EDF: к нему прилежит только сторона DE, а EF к нему вообще никак не относится.
Поэтому эти треугольники с изначальными условиями не равны.
Начнём рассматривать приусловия по порядку:
1. ∠ВАС - острый.=> ∠EDF тоже острый, так как ∠ВАС = ∠EDF, по условию.
Но это нам ничего не даёт.
Всё по прежнему остаётся на своих местах, то есть мы не сможем доказать равенство этих треугольников.
2. ∠ВАС - прямой.=> ∠EDF тоже прямой, так как ∠ВАС = ∠EDF, по условию.
И это многое нам даёт.
Во-первых, △АВС и △DEF - прямоугольные.
Рассмотрим эти треугольники:
АВ = DF, по условию.
ВС = EF, по условию.
=> △АВС = △DEF, по катету и гипотенузе
У прямоугольных треугольники с другие признаки равенства.
3. ВАС - тупой.Мы знаем, что тупоугольный треугольник = 1 тупой угол + 2 острых угла.
Но нас ничего не даёт, для того, чтобы доказать равенство треугольников.
4. ∠ВСА - острый.Но это нам ничего не даёт, так как ∠ВСА не равен ∠EFD, по условию.
Просто ∠ВСА - острый, а ∠EFD может быть тупым или может даже прямым.
5. ∠ВСА - прямой.Во-первых, мы не сможем доказать равенство, так как нам не сказано, что ∠ВСА = ∠EFD.
Во-вторых, нам не сказано, что ∠EFD - прямой.
=> ∠EFD совершенно любым.
6. ∠ВСА - тупой.Но это нам ничего не даёт, так как ∠ВСА не равен ∠EFD, по условию.
Просто ∠ВСА - тупой, а ∠EFD может быть острым или может даже прямым.
7. АВ > ВС.Это нам, опять же, ничего не даёт.
8. АВ < ВСАВ < ВС, но это нам ничего не даёт.
Всё по прежнему останется.
ответ: 2).△АВС и △DEF.
AB = DE
BC = EF
∠BAC = ∠EDF
Найти:дополнительное условие, при котором △АВС = △DEF
Решение:Обратим внимание, почему изначально △АВС не равен △DEF:
Если две стороны и угол МЕЖДУ ними одного треугольника соответственно равны двум сторонам и углу МЕЖДУ ними другого треугольника, то такие треугольники равны.
К ∠ВАС прилежит только 1 сторона, а именно АВ. А сторона ВС к этому углу вообще никак не относится.
Тоже самое и с ∠EDF: к нему прилежит только сторона DE, а EF к нему вообще никак не относится.
Поэтому эти треугольники с изначальными условиями не равны.
Начнём рассматривать приусловия по порядку:
1. ∠ВАС - острый.=> ∠EDF тоже острый, так как ∠ВАС = ∠EDF, по условию.
Но это нам ничего не даёт.
Всё по прежнему остаётся на своих местах, то есть мы не сможем доказать равенство этих треугольников.
2. ∠ВАС - прямой.=> ∠EDF тоже прямой, так как ∠ВАС = ∠EDF, по условию.
И это многое нам даёт.
Во-первых, △АВС и △DEF - прямоугольные.
Рассмотрим эти треугольники:
АВ = DF, по условию.
ВС = EF, по условию.
=> △АВС = △DEF, по катету и гипотенузе
У прямоугольных треугольники с другие признаки равенства.
3. ВАС - тупой.Мы знаем, что тупоугольный треугольник = 1 тупой угол + 2 острых угла.
Но нас ничего не даёт, для того, чтобы доказать равенство треугольников.
4. ∠ВСА - острый.Но это нам ничего не даёт, так как ∠ВСА не равен ∠EFD, по условию.
Просто ∠ВСА - острый, а ∠EFD может быть тупым или может даже прямым.
5. ∠ВСА - прямой.Во-первых, мы не сможем доказать равенство, так как нам не сказано, что ∠ВСА = ∠EFD.
Во-вторых, нам не сказано, что ∠EFD - прямой.
=> ∠EFD совершенно любым.
6. ∠ВСА - тупой.Но это нам ничего не даёт, так как ∠ВСА не равен ∠EFD, по условию.
Просто ∠ВСА - тупой, а ∠EFD может быть острым или может даже прямым.
7. АВ > ВС.Это нам, опять же, ничего не даёт.
8. АВ < ВСАВ < ВС, но это нам ничего не даёт.
Всё по прежнему останется.
ответ: 2).
Через точку А окружности радиусом 10 проведены две хорды АВ и АС,
так что угол ВАС =90°, АС=12.
Найти длину окружности, касающейся данной окружности и посторенных хорд.
Так как угол ВАС -90°, треугольник АВС - прямоугольный, его гипотенуза ВС - диаметр окружности, и равна 2r=20, так как центром описанной вокруг прямоугольного треугольника окружности является середина его гипотенузы.
Третья сторона АВ этого треугольника равна 16 ( треугольник египетский с отношением сторон 3:4:5, можно проверить по т. Пифагора).
Проведем из вершины угла В прямую, параллельную АС.
Из вершины С проведем касательную СМ к внутренней окружности
Получена прямоугольная трапеция АВМС с вписанной окружностью, диаметр которой равен АВ, так как диаметр вписанной окружности в трапецию равен высоте трапеции, а АВ перпендикулярна основаниям трапеции и является ее высотой.
Так как диаметр меньшей окружности равен 16, ее радиус равен
r=16:2=8
а длина окружности
С=2πr =16 π