М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Pars1fal
Pars1fal
18.07.2021 18:26 •  Геометрия

Стереометрия. Теорема о трех перпендикулярах решить 4 и 5 задание. Очень важно ! Буду сильно благодарна !


Стереометрия. Теорема о трех перпендикулярах решить 4 и 5 задание. Очень важно ! Буду сильно благода

👇
Ответ:
Dashaegor540
Dashaegor540
18.07.2021

Объяснение:

Чтобы решать такие задачи, нужно уметь правильно определять, что есть наша прямая, что есть наклонная к нашей прямой, а что есть проекция наклонной.

4. В четвертой задаче у вас по условию дан уже прямой угол, от этого нужно отталкиваться.

Нам дан прямой угол между BC и AC, эти прямые обе лежат в плоскости нижнего треугольника, значит какая то из них будет являтся искомой прямой, а какая то будет  проекцией наклонной на эту же плоскость нижнего треугольника. BC не может быть ничьей проекцией по рисунку, значит она будет являтся нашей прямой. Тогда AC

будет являться чьей-то проекцией. По рисунку видно, что AC будет являтся проекцией MC и MA перпендикуляр к плоскости ACB(если не понятны мои рассуждения, рекомендую разобраться, как строятся

наклонные и их проекции, а также разобраться и с самой теоремой о этих перпендикулярах).  

Таким образом, зная все три прямые, можем применять теорему о трех перпендикулярах.

BC (наша прямая в плоскости) перпенд. AC (AC проекция MC) - по условию, значит BC также будет перпендикулярна и самой MC - по теореме.

Дальше просто техническая часть, находим BC из нижнего прямоугольного треугольника и применяем свойство синуса для нахождения гипотенузы MB в треуг. MCB.

5. В пятом задании необходимо правильно определить искомое расстояние, (как известно, расстояние это кратчайший путь, т.е перпендикуляр). Когда мы его проведем (пусть это будет MO),

он будет являтся нашей наклонной на плоскость ABC, далее необходмо будет провести проекцию данной наклонной в плоскости ABC. Так как MO - уже перпендикуляр к

AC, то и его проекция в плоскости также будет перпендикулярна к AC. Далее, похожая техническая часть 4-го задания, увидим в плоскости ABC необходмый прямоугольный треугольник,  

применяя свойство синуса найдем катет. И в нашем искомом треугольнике также найдем сторону по Пифагору (зная, что MB перпендикуляр к плоскости).

P.S Делать нечего на третьем курсе физмата <3

4,4(17 оценок)
Открыть все ответы
Ответ:
kiskaignatushkina
kiskaignatushkina
18.07.2021

В прямоугольнике все углы прямые, противоположные стороны равны и параллельны, а диагонали равны и точкой пересечения делятся пополам.

Пусть данный прямоугольник АВСD, точки К, М, Н, Т - соответственно середины АВ, ВС, СD, DА. 

Соединим  последовательно точки К,М,Н и Т

Треугольники КАТ, КВМ, МСН  и НDТ прямоугольные, в каждом один катет равен половине меньшей стороны, другой - половине большей стороны. Следовательно, эти треугольники равны, отсюда равны их гипотенузы: КМ=МН=НТ=ТК. 

КМНТ - четырехугольник, все стороны которого равны (признак ромба).

Кроме того:  диагонали  КН║ВС и МТ║АВ.  

В прямоугольнике стороны пересекаются под прямым углом, ⇒ 

параллельные им диагонали ромба КН и МТ тоже пересекаются под прямым углом - признак ромба. 

Четырехугольник КМНТ - ромб, и его вершинами являются середины сторон прямоугольника. 


Докажите что середины сторон прямоугольника являются вершинами ромба
4,7(18 оценок)
Ответ:
школьник812
школьник812
18.07.2021

В прямоугольнике все углы прямые, противоположные стороны равны и параллельны, а диагонали равны и точкой пересечения делятся пополам.

Пусть данный прямоугольник АВСD, точки К, М, Н, Т - соответственно середины АВ, ВС, СD, DА. 

Соединим  последовательно точки К,М,Н и Т

Треугольники КАТ, КВМ, МСН  и НDТ прямоугольные, в каждом один катет равен половине меньшей стороны, другой - половине большей стороны. Следовательно, эти треугольники равны, отсюда равны их гипотенузы: КМ=МН=НТ=ТК. 

КМНТ - четырехугольник, все стороны которого равны (признак ромба).

Кроме того:  диагонали  КН║ВС и МТ║АВ.  

В прямоугольнике стороны пересекаются под прямым углом, ⇒ 

параллельные им диагонали ромба КН и МТ тоже пересекаются под прямым углом - признак ромба. 

Четырехугольник КМНТ - ромб, и его вершинами являются середины сторон прямоугольника. 

4,5(66 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ