Если предположить, что равносторонний конус - это конус, у которого длина образующей равна диаметру основания, то ответ: Проведём осевое сечение конуса с вписанным в него шаром. Получим равносторонний треугольник с вписанной в него окружностью. При нахождении отношений длину образующей можно принять равной 1. Sk = So+Sбп So = πD²/4 = π*1²/4 = π/4 Sбп = πRL = π*(1/2)*1 = π/2 Sk = π4 + π/2 = 3π/4 Радиус шара равен 1/3 высоты треугольника в осевом сечении r = (1/3)Н = = (1/3)*scrt(1-(1/4)) = scrt3/6 = 1/2scrt3 Sш = 4πr² = 4π*(1/2scrt3)^2= 4π*1/12 = π*/3 Отсюда отношение площади полной поверхности конуса к площади поверхности шара равно (3π/4)/(π/3) = 9/4.
1) Формула объёма конуса V=S•H:3=πr²H:3
Формула объёма шара
V=4πR³:3
Осевое сечение данного конуса - равносторонний треугольник, т.к. его образующая составляет с плоскостью основания угол 60°.
Выразим радиус r конуса через радиус R шара.
r=2R:tg60°=2R/√3
V(кон)=π(2R/√3)²•2R²3=π8R³/9
V(шара)=4πR³/3
V(кон):V(шар)=[π8R³/9]:[4πR³/3]=(π•8R³•3/9)•4πR³=2/3
———————
2) Формула объёма цилиндра
V=πr²•H
Формула площади осевого сечения цилиндра
S=2r•H
Разделим одну формулу на другую:
(πr²•H):(2r•H)=πr/2⇒
96π:48=πr/2⇒
4π=πr
r=4
Из площади осевого сечения цилиндра:
Н=S:2r=48:8=6
На схематическом рисунке сферы с вписанным цилиндром
АВ- высота цилиндра, ВС - его диаметр,
АС - диаметр сферы.
АС=√(6²+8²)=√100=10
R=10:2=5
S(сф)=4πR8=4π•25=100π см²