Объяснение:
а) ∠1=37° , ∠7= 143°;
∠7 и ∠8 - смежные углы. Их сумма 180°,
⇒∠8=180°-∠7=180°-143°=37°
⇒ ∠1=∠8=37°
∠1 и ∠8 - соответственные углы при двух прямых а и b и секущей с
Если соответственные углы равны, то прямые параллельны⇒ а ║ b
б) ∠1= ∠6
Но ∠6=∠8 - как вертикальные углы при двух пересекающихся прямых b и с.
⇒∠1=∠8
∠1 и ∠8 - соответственные углы при двух прямых а и b и секущей с, а если соответственные углы равны, то прямые параллельны.
⇒ а ║ b
в) ∠1 = 45°, а ∠7 в три раза больше ∠3
∠1=∠3 - как вертикальные углы при двух пересекающихся прямых а и с.
⇒ ∠3=45°. ∠7=3*45°=135°
∠7 и ∠8 - смежные углы. Их сумма 180°,
⇒∠8=180°-∠7=180°-135°=45°
⇒∠1 = ∠8 = 45°
∠1 и ∠8 - соответственные углы при двух прямых а и b и секущей с
Если соответственные углы равны, то прямые параллельны⇒ а ║ b
Определение: "Углом между плоскостью (АВМ) и не перпендикулярной ей прямой ВС называется угол между этой прямой и ее проекцией (ВN) на данную плоскость.
а) В случае, если АВСD - квадрат, то проекция ВD на плоскость АВМ - отрезок BM. BD=a√2 (как диагональ квадрата со стороной "а"). Сторона квадрата CD равна и параллельна АВ, следовательно CD параллельна плоскости АВМ => CD║MN и DM=CN. CN=a*Sinφ (из треугольника CBN).
В треугольнике BDM: Sin(<DBM)=DM/BD => Sin(<DBM)= a*Sinφ/a√2.
ответ: <DBM = Sinφ*√2/2.
б) В случае АВСD - ромб с углом В = 120°, BD=АВ=BC= а. DM=CN (так как DC параллельна АВ, а значит и плоскости АВМ).
CN=a*Sinφ (из треугольника CBN). => DM=a*Sinφ.
В треугольнике BDM: Sin(<DBM)=DM/BD => Sin(<DBM)= a*Sinφ/a.
ответ: <DBM = φ.
а) р=а+2b. б) p=2P-2b. в) Р=2P-a