Пусть о – центр окружности, аbсdef – данный шестиугольник сторона шестиугольника ab=а=6см. для шестиугольника радиус описанной окружности равен стороне шестиугольника r=a r=6 см центральный угол правильного шестиугольника равен 360\6=60 градусов площадь кругового сектора вычисляется по формуле sкс=pi*r^2*альфа\360 градусов где r – радиус круга, а альфа - градусная мера соответствующего угла. sкс=pi*6^2*60 градусов\360 градусов= 6*pi см^2 площадь треугольника аоb равна аb^2*корень (3)\4= =6^2 *корень (3)\4=9*корень (3) см^2 . площадь фигуры, ограниченной дугой окружности и стягивающей ее хордой= площадь кругового сектора- площадь треугольника аос площадь фигуры, ограниченной дугой окружности и стягивающей ее хордой (площадь меньшей части круга, на которые его делит сторона шестиугольника) = =6*pi- 9*корень (3) см^2 . ответ: 6*pi см^2, 6*pi- 9*корень (3) см^2
(2; 1; -8), В(1; -5; 0), С(8; 1; -4). Докажите, что - равнобедренный и найдите длину средней линии треугольника, соединяющей середины боковых сторон.11. Даны точки А(0; 1; 2), В(; 1; 2), С(; 2; 1), D(0; 2; 1). Докажите, что АВСD – квадрат.12. Даны точки А(0; 4; 0), В(2; 0; 0), С(4; 0; 4), и D(2; 4; 4). Докажите, что АВСD – ромб.13. Даны точки А(-3; 1; 2) и В(1; -1; -2). Найдите координаты точки С, если .14. Даны точки А(2; 5; 8) и В(6; 1; 0). Найдите на оси ординат точку С, равноудаленную от А и В. ИЛИ ЖЕ13. С(x;y;z) x= (-3+1)/2= -1 y=(1+1)/2=1 z=(2+2)/2=2А