п равильная четырехугольная призма - это многогранник, основания которого являются правильными четырехугольниками - квадратами, а боковые грани — равными прямоугольниками.
так как сторона квадрата ( верхнего основания призмы) противолежит углу 30 градусов, она равна половине диагонали призмы и равна 5 см. нужно теперь найти высоту призмы. для этого придется найти диагональ боковой грани из треугольника, гипотенузой в котором является диагональ призмы, а катетами сторона квадрата и диагональ боковой грани. она равна √(100 -25)= √75 =5√3теперь находим высоту призмыh² =(5√3)² -5² =√50=5√2площадь полной поверхности призмы равна площади ее четырех боковых граней плюс площадь оснований. площадь боковых граней равна4*5*5√2=100√2площадь оснований 2*5*5=50 см²
площадь полной поверхности призмы100√2 +50=50(2√2+1) см
Пусть EB = x, BD = y. Получим 2 уравнения:
EB = 16; BD = 18, тогда
АВ = 20 + 16 = 36
ВС = 30 + 18 = 48
Заметим, как относятся стороны треугольника АВС:
АВ : ВС : АС = 60 : 48 : 36 = 5 : 4 : 3 - египетский треугольник, т.е. ΔАВС - прямоугольный с прямым углом В.
Тогда ΔЕВD - так же прямоугольный, его катеты равны 16 и 18, найдем гипотенузу ED:
Площадь прямоугольного ΔЕВD:
S = EB * BD /2 = 16*18/2 = 144
Полупериметр ΔЕВD:
p = (EB + BD + ED)/2 = (16+18+2√145)/2 = (34 + 2√145)/2 = 17 + √145
радиус вписанной окружности:
r = S / p = 144/(17+√145) = 17-√145