1. Дано: две концентрические окружности. АD-диаметр большей, СВ- диаметр меньшей окр.
Найти АВ/СD
Решение.
Треугольники АОВ и DОС равны по 1 признаку равенства треугольников. в них АО=DО как радиусы большой окружности, ОВ=ОС как радиусы малой окружности, углв АОВ и DОС равны как вертикальные, а из равенства треугольников следует равенство сторон АВ и СD, поэтому отношение равных сторон равно единице.
2. Дано. АВ- диаметр окружности. радиус =6 см
∠АВК=30°
Найти расстояние от точки А до прямой ВК
Решение.
соединим А и К, угол АКВ=90°, т.к. это вписанный угол, опирающийся на диаметр АВ, равный 2*6, а расстояние АК- искомое, это катет, лежащий против угла в 30°, он равен половине гипотенузы, т.е. 2*6*2=6/см/
Половина диагонали m√2/2, высота и боковое ребро образуют прям-ный тр-ник с катетом m√2/2 и углом против него α/2.
tg (α/2) = (m√2/2) / H
а) Высота равна H = (m√2/2) / tg (α/2) = m√2*ctg (α/2) / 2
б) Боковое ребро b = (m√2/2) / sin (α/2)
в) Апофема (высота боковой грани) L^2 = b^2 - m^2 = (m^2/2) / sin^2 (α/2) - m^2
L = m*√ [1 - 2sin^2 (α/2)] / sin (α/2) = m*√(cos α) / sin (α/2)
Угол между боковой гранью и плоскостью основания
sin β = H / L = m√2*ctg(α/2) / 2 * sin(α/2) / (m*√(cos α)) = √2*cos(α/2) / (2√(cos α))
г) Двугранный угол при боковом ребре - это не знаю.