Шаром называется тело, которое состоит из всех точек пространства, находящихся на расстоянии не больше данного от данной точки. Поверхность шара называется сферой.
Сфера - поверхность, состоящая из всех точек пространства, расположенных на заданном расстоянии от данной точки.
Уравнение сферы на картинке
2. Изобразим схематически шар и диаметр АВ сечения, проведенного под углом 45° к его радиусу.
Треугольник АОВ - равнобедренный прямоугольный, и его гипотенуза ( диаметр сечения) равна 8√2
Радиус сечения вдвое меньше =4√2
Сечение шара плоскостью - круг.
Площадь круга
S=πr²
Площадь сечения = π (4√2)² =32 см²
3. Проводим ВВ₁ || OO₁
Треугольник АВВ₁ - прямоугольный
АВ₁=8 ( по теореме Пифагора) или потому то это египетский треугольник
АВ₁²=АВ²-ВВ₁²=10²-6²=64=8²
Рассмотрим треугольник АОВ₁ ( см рисунок справа)
Равнобедренный треугольник. проведем высоту ОК. По теореме Пифагора
ОК=3.
Или потому что треугольник АОК - египетский
ОК- расстояние между плоскостью, содержащей отрезок АВ и плоскостью, содержащей ось ОО₁
Объяснение:
12
Если диагональ образует с площадью основания,то диагональ основания равна высоте прямоугольного параллелепипеда.
Найдём диагональ основания по теореме Пифагора:
h=d=13 см
S = 2(a · b + a · h + b · h)=2(12 · 5 + 12 · 13 + 5 · 13) =2(60+156+65) = =2*281=562 см²
V=a · b · h=12 · 5 · 13=780 см³
13
Если образующая конуса наклонена к плоскости основания на 45°,то радиус основания равен высоте.Примем радиус основания за х,тогда по теореме Пифагора:
l²=2r²
12²=2x²
x²=144:2
x²=72
x=√72=6√2 см
S=π r (r + l)=π6√2(6√2+12)=π72+π72√2=π72(1+√2) см²
V=144√2 π см³
См. решение
Объяснение:
1) Находим середину отрезка CD и отмечаем ее точкой M
2) Через точку M строим перпендикуляр к отрезку CD. Отмечаем точки пересечения перпендикуляра со сторонами <AOB: P и K
3) Докажем что точки P и K равноудалены от C и D.
Рассмотрим ΔCMK и ΔDMK: <CMK = 90° = <DMK, CM = MD по условию, MK - общая сторона для ΔCMK и ΔDMK, => ΔCMK = ΔDMK по двум катетам, => CK = KD, т.е точка K - равноудалена от C и D и точка K лежит на стороне OB <AOB
Аналогично рассмотрим ΔCMP и ΔDMP: <CMP = 90° = <DMP, CM = MD по условию, MP - общая сторона для ΔCMP и ΔDMP, => ΔCMP = ΔDMP по двум катетам, => CP = PD, т.е точка P - равноудалена от C и D и точка P лежит на стороне OA <AOB
пт рентннтрр
Объяснение:
нтне