1
Избавься от ограничений
ПОПРОБУЙ ЗНАНИЯ ПЛЮС СЕГОДНЯ
angelikaliaka
08.12.2014
Геометрия
10 - 11 классы
+18 б.
ответ дан
сторона основания правильной четырехугольной пирамиды равна 6 см, высота - 4 см. Найти площадь полной поверхности.
1
СМОТРЕТЬ ОТВЕТ
Войди чтобы добавить комментарий
ответ, проверенный экспертом
4,0/5
7
Hrisula
главный мозг
7.5 тыс. ответов
16.7 млн пользователей, получивших
Обозначим пирамиду МАВСД.
Основание - квадрат со стороной 6 см. Высота МО=4 см.
МН- апофема ( высота боковой грани правильной пирамиды).
Площадь полной поверхности пирамиды - сумма площади основания и боковой поверхности.
S (бок)=0,5•Р•МН
Через основание высоты проведем КН║СВ.
КН⊥АВ. КН=ВС=6
ОН=КН:2=3
Из прямоугольного ∆ МОН по т.Пифагора
МН=5 см
S(бок)=0,5•4•6•5:2=60 см²
S(АВСД)=6²=36 см²
S(полн)=36+60=96 см²
552 кв. ед.
Объяснение:
Все грани прямоугольного параллелепипеда - прямоугольники.
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений:
B₁D² = AB² + AD² + BB₁²
BB₁² = B₁D² - (AB² + AD²) = 17² - (9² + 12²) = 289 - (81 + 144) = 289 - 225 = 64
BB₁ = √64 = 8
Площадь полной поверхности:
Sполн. = Sбок. + 2Sосн.
Площадь боковой поверхности:
Sбок. = Росн. · ВВ₁
Sбок. = 2(AB + AD) · BB₁ = 2(9 + 12) · 8 = 336 кв. ед.
Sосн. = AB · AD = 9 · 12 = 108 кв. ед.
Sполн. = 336 + 2 · 108 = 336 + 216 = 552 кв. ед.
Отложим из т. A отрезок, равный и параллельный отрезку BC. Получим точку (-2;0)