Объяснение:
ЗАДАЧА 1
1 вариант. Нужно построить дугу 120 с транспортира и из любой точки не на этой дуге провести лучи.
2 вариант. Нужно построить дугу 120 ( по т. о вписанном угле) с циркуля или линейки.Например так:
Чтобы разделить окружность радиуса r надо
1)из точки пересечения диаметра с окружностью начертить дополнительную дугу радиуса r.
2) получившиеся точки пересечения соединяем,
3) каждая дуга будет 120 градусов
ЗАДАЧА 2
Пусть одна часть х, тогда меньшая дуга 4х, большая дуга 5х.
Вся окружность 360, 4х+5х=360, х=40.
Меньшая дуга 4*40=160, большая дуга 5*40=200.
Пусть хорда АВ, точка М может лежать на меньшей дуге или на большей.
По т.о вписанном угле получаем:
-Если М лежит на меньшей дуге , то ∠АМВ=1/2*160=80
-Если М лежит на большей дуге , то ∠АМВ=1/2*200=100.
Пусть даны две прямые
y=k _{1} xy=k
1
x ,y=k _{2} xy=k
2
x
Причем tg \alpha _{1}=k _{1}tgα
1
=k
1
tg \alpha _{2} =k _{2}tgα
2
=k
2
Найдем тангенс угла между этими прямыми:
tg( \alpha _{1} - \alpha _{2})= \frac{tg \alpha _{1}-tg \alpha _{2} }{1+tg \alpha _{1}tg \alpha _{2} }= \frac{k _{1}-k _{2} }{1+k _{1}k _{2} }tg(α
1
−α
2
)=
1+tgα
1
tgα
2
tgα
1
−tgα
2
=
1+k
1
k
2
k
1
−k
2
Прямые перпендикулярны, угол между ними 90⁰. Тангенс 90⁰ не существует, значит в последней дроби знаменатель равен 0,k _{1} k _{2} =-1k
1
k
2
=−1
это необходимое и достаточное условие перпендикулярности двух прямых
y=k _{1}xy=k
1
x ,y=k _{2} xy=k
2
x
Данная прямая может быть записана в виде y= \frac{5}{2} x+ \frac{7}{2}y=
2
5
x+
2
7
Угловой коэффициент равен 5/2,
Значит угловой коэффициент перпендикулярной ей прямой будет равен (-2/5).
ответ. y=- \frac{2}{5}xy=−
5
2
x
И все прямые ей параллельные, то есть
y=- \frac{2}{5}xy=−
5
2
x +С,
где С- любое действительное число
Объяснение:
решение не мое