ΔАВС - правильный ⇒ все его стороны равны "а" . Высота равностороннего треугольника является и медианой. Так как ОХ⊥ОУ , то если две вершины лежат на оси ОХ, тогда третья вершина лежит на оси ОУ. Пусть вершины А и С лежат на оси ОХ, тогда координаты точки А(х,0) , а координаты точки С(-х,0). Вершина В лежит на оси ОУ и её координаты будут В(0,у) .
По условию сумма всех координат равна:
(-х+0)+(х+0)+(0+у)=2√3 ⇒
у=2√3 (2√3>0 ⇒ точка В лежит в верхней полуплоскости) ⇒ высота ВО=h=2√3 .
22см - 12 см = 10 см Это означает, что на прямой строим рядом два отрезка по 11 см, получим отрезок АВ = 22 см 11 см * 2 = 22 см затем на этом отрезке АВ от его начала откладываем три отрезка по 4 см, отметим точку К. АК = 4 см * 3 = 12 см Оставшийся отрезок КВ = 22 см - 12 см = 10 см ответ : КВ = 10 см
ответ: а=4 .
ΔАВС - правильный ⇒ все его стороны равны "а" . Высота равностороннего треугольника является и медианой. Так как ОХ⊥ОУ , то если две вершины лежат на оси ОХ, тогда третья вершина лежит на оси ОУ. Пусть вершины А и С лежат на оси ОХ, тогда координаты точки А(х,0) , а координаты точки С(-х,0). Вершина В лежит на оси ОУ и её координаты будут В(0,у) .
По условию сумма всех координат равна:
(-х+0)+(х+0)+(0+у)=2√3 ⇒
у=2√3 (2√3>0 ⇒ точка В лежит в верхней полуплоскости) ⇒ высота ВО=h=2√3 .
По теореме Пифагора из прямоугольного ΔАВО имеем:![a^2=\Big(\dfrac{a}{2}\Big)^2+h^2\ \ \ \Rightarrow \ \ \ a^2=\dfrac{a^2}{4}+(2\sqrt3)^2\ \ ,\ \ \ a^2=\dfrac{a^2}{4}+4\cdot 3\ \ ,\\\\\\\dfrac{4a^2-a^2}{4}=12\ \ ,\ \ \dfrac{3a^2}{4}=12\ \ ,\ \ \ a^2=\dfrac{12\cdot 4}{3}\ \ ,\ \ \ a^2=16\ \ ,\ \ a=40\ .](/tpl/images/1357/9401/697b5.png)
Длина сторона правильного треугольника равна 4 .