М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
maksim15m15
maksim15m15
17.06.2021 16:28 •  Геометрия

Втреугольнике авс угол а в 3 раза больше угла в, а угол с в 2 раза больше угола а

👇
Ответ:
VladProstoboy
VladProstoboy
17.06.2021
Пусть хº угол в, 3хº угол а, тогда 6хº угол с.
по условию задачи известно, что сумма углов в треугольнике 180º
х+3х+6х=180
10х=180
х=18
3х=54
6х=108
А 54, В 18, С 108
4,8(11 оценок)
Открыть все ответы
Ответ:
Мойурок
Мойурок
17.06.2021
Построим сумму векторов а и b и их разность.
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129

Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301
4,5(77 оценок)
Ответ:
мир285
мир285
17.06.2021

Доказать подобие треугольников А1СВ1 и АВС.

сделаем построение по условию

треугольники ACA1 и ВСВ1 - подобные по ПЕРВОМУ признаку подобия (по двум углам)

<AA1C=<BB1C=90 град

<ACA1=<BCB1 -вертикальные

следовательно , соответственные стороны относятся

СA1 / CB1 =CA / CB = k1   -коэффициент подобия для треугольников ACA1 и ВСВ1

отношение можно записать по-другому

СA1 / CA = CB1 / CB = k2  -коэффициент подобия для треугольников А1СВ1 и АВС.

т.е. треугольники А1СВ1 и АВС подобны по ВТОРОМУ признаку подобия 

(если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы между этими сторонами равны)

пропорциональные стороны СA1 / CA = CB1 / CB

<A1CB1 = <ACB --вертикальные

доказано подобие треугольников А1СВ1 и АВС.


Дан треугольник авс с тупым углом с, проведены высоты аа1 и вв1. доказать подобие треугольников а1св
4,8(76 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ