У чотирикутній зрізаної піраміди сторони однієї основи дорівнюють 6, 7, 8, 9 см, а менша сторона другої основи дорівнює 5 см. Знайдіть решту сторін цієї основи.
Так как в ΔABL две стороны равны АВ=АL по условию , то ΔABL -равнобедренный. А так как ещё и угол в равнобедренном треугольнике ∠ВАL=60°, то этот треугольник - равносторонний, следовательно ВL=AB=AL=CD, ∠АВL=60° ⇒
∠CBL=110°-∠ABL=110°-60°=50° .
Аналогично, ΔВСК - равносторонний (КС=ВС по условию и ∠ВСК=60°) , следовательно ВК=ВС=СК=AD, ∠KBC=60° ⇒
∠KBL=∠KBC-∠CBL=60°-50°=10° .
Теперь рассмотрим три равных треугольника: ΔADL=ΔKCD=ΔKBL . Они равны по 1 признаку равенства треугольников:
AD=KC=BK , AL=CD=BL , ∠LAD=∠KCD=∠KBL=10° .
Отсюда следует, что стороны LD=KD=KL ⇒ ΔKLD - равносторонний, а в равностороннем треугольнике все углы равны 60°.
Дано : <ABC = <ABD =<CBD =90°; AB =1 ; BC =3 ;B D =4 . 1) а) проекцию BD на плоскость ABC = 0, т.к . BD ┴ (ABC) DC┴ BA DC ┴ BC); б) AB ┴ (DBC) т.к . AB┴ BD и AB┴ BC. Значит <ADB это угол между прямой AD и плоскостью DBC следовательно : из ΔADB : sin (<ADB) =AB/AD . ΔABD : AD =√(DB² +AB²) =√(16 +1) =√17 .
sin (<ADB) =AB/AD =1/√17 .
2) ABCD_ ромб ; AB=BC =CD =DA = BH =b ; < A =< C =60° ; HB ┴(BAC) или тоже самое HB ┴(ABCD) а) Определите угол между плоскостями: BHC и DBY . Y --- неизвестно Определить угол между плоскостями: BHC и DBH : (BHC) ^ (DBH) = <DBE =60° . DB ┴ BH ,CB┴ BH лин. угол [ HB ┴((ABCD)⇒HB ┴BD ] б) Определить угол между плоскостями DНC и BAC .
В ΔHDC проведем HE ┴ CD ( E∈ [CD] ) и E соединим с вершиной B. <BEH будет искомый угол ; tq(<BEH) =BH/BE = b :(b*√3)/2 =2/√3 ; [Δ BEC : B E =BC*sin60°=b*√3/2 ] .
АВСД - параллелограмм, АД=ВС , АВ=СД , АД║ВС , АВ║СД .
∠АВС=110° ⇒ ∠ВАД=180°-110°=70° , ∠BCD=∠BAD=70° .
∠LAD=10° , тогда ∠BAL=70°-∠ДАL=70°-10°=60° .
∠KCD=10° , тогда ∠ВСК=∠ВСD-∠KCD=70°-10°=60° .
Рассмотрим два треугольника: ΔABL и ΔBCK .
Так как в ΔABL две стороны равны АВ=АL по условию , то ΔABL -равнобедренный. А так как ещё и угол в равнобедренном треугольнике ∠ВАL=60°, то этот треугольник - равносторонний, следовательно ВL=AB=AL=CD, ∠АВL=60° ⇒
∠CBL=110°-∠ABL=110°-60°=50° .
Аналогично, ΔВСК - равносторонний (КС=ВС по условию и ∠ВСК=60°) , следовательно ВК=ВС=СК=AD, ∠KBC=60° ⇒
∠KBL=∠KBC-∠CBL=60°-50°=10° .
Теперь рассмотрим три равных треугольника: ΔADL=ΔKCD=ΔKBL . Они равны по 1 признаку равенства треугольников:
AD=KC=BK , AL=CD=BL , ∠LAD=∠KCD=∠KBL=10° .
Отсюда следует, что стороны LD=KD=KL ⇒ ΔKLD - равносторонний, а в равностороннем треугольнике все углы равны 60°.
Значит, искомый угол ∠KDL=60° .