Пусть коэффициент пропорциональности равен х, (x>0), тогда высоты равны 5х/см/ и 7х/см/, если меньшая сторона у/см/, периметр 72см, полупериметр 36см, тогда большая сторона (36-у).
Т.к. площадь параллелограмма равна произведению стороны на высоту, проведенную к этой стороне, (учитываем, что к большей стороне проводится меньшая диагональ, а к меньшей стороне большая диагональ), составим и решим уравнение.
5х*(36-у)=7х*у, сокращая на положительную величину х, получим
5*(36-у)=7у⇒12у=5*36; у=5*36/12=15, значит, меньшая сторона 15 см, а большая 36-15=21/см/, значит, две стороны у параллелограмма равны по 15см, а две другие по 21см, т.к. противоположные стороны параллелограмма равны. Заметим, что отношение меньшей стороны к большей равно 15/21=5/7, т.е. такое же, как и у высот.
Можно было бы решить задачу, учитывая последнее соотношение, но непременно показать, что то, что дано в условии, это не отношение сторон, а отношение высот.
ответ: стороны параллелограмма равны 15см, 21см, 15см, 21см.
Прикладываю рисунок* Так как угол ADC=45 градусам по условию, то угол BCD=180-45=135 по свойству. Рассмотрим треугольник CHD. В нем угол CHD равен 90 градусов, так как CH-высота. Угол ADC равен 45 градусам по условию, а угол CHD=180-90-45=45 градусам. Соответственно, этот треугольник равнобедренный - HD=CH. Рассмотрим фигуру ABCH. В ней углы ABC и HAB равны 90 градусов, так как трапеция прямоугольная. Угол AHC=90 градусов, так как CH-высота трапеции. Угол BCH=135-45=90 градусов. Следовательно ABCH - прямоугольник. По условию задачи BC=27 см, значит и AH=BC=27 см, так как это прямоугольник. Из этого можно найти HD. AD равно 33 см по условию, AH=27, поэтому HD=33-27=6 см. Так как треугольник CHD - равнобедренный, в нем HD=CH=6 см. Высота найдена, можно искать площадь трапеции. Sтрапеции=27+33/2 * 6 = 180 см^2 ответ:180 см^2
Пусть коэффициент пропорциональности равен х, (x>0), тогда высоты равны 5х/см/ и 7х/см/, если меньшая сторона у/см/, периметр 72см, полупериметр 36см, тогда большая сторона (36-у).
Т.к. площадь параллелограмма равна произведению стороны на высоту, проведенную к этой стороне, (учитываем, что к большей стороне проводится меньшая диагональ, а к меньшей стороне большая диагональ), составим и решим уравнение.
5х*(36-у)=7х*у, сокращая на положительную величину х, получим
5*(36-у)=7у⇒12у=5*36; у=5*36/12=15, значит, меньшая сторона 15 см, а большая 36-15=21/см/, значит, две стороны у параллелограмма равны по 15см, а две другие по 21см, т.к. противоположные стороны параллелограмма равны. Заметим, что отношение меньшей стороны к большей равно 15/21=5/7, т.е. такое же, как и у высот.
Можно было бы решить задачу, учитывая последнее соотношение, но непременно показать, что то, что дано в условии, это не отношение сторон, а отношение высот.
ответ: стороны параллелограмма равны 15см, 21см, 15см, 21см.