Определение:Проекция точки на прямую - это или сама точка, если она лежит на прямой, или основание перпендикуляра, опущенного из этой точки на заданную прямую.
Так как А1 и В1 - проекции точек на прямую ребро двугранного угла, то АА1 и ВВ1 перпендикулярны ему.
Грани двугранного угла по условию взаимно перпендикулярны, следовательно, АА1 перпендикулярно плоскости, которой принадлежит т.В, и ВВ1 перпендикулярно плоскости, которой принадлежит т.А.
ВА1В1 прямоугольный.
ВА1=А1В1+ВВ1=36+49=85
Отрезок АА1 перпендикулярен плоскости, которой принадлежит т. В, он перпендикулярен любой прямой, проходящей через его основание А1 (свойство).
3. Вопрос: как указана точка N? Отрезки будут равны, если являются радиусами окружности с центром в т. N, а стороны треугольника являются касательными к этой окружности (перпендикуляра проведены в точки касания). В другом случае, эти перпендикуляры отсекают подобные треугольники (по двум углам), но не равные.
Определение:Проекция точки на прямую - это или сама точка, если она лежит на прямой, или основание перпендикуляра, опущенного из этой точки на заданную прямую.
Так как А1 и В1 - проекции точек на прямую ребро двугранного угла, то АА1 и ВВ1 перпендикулярны ему.
Грани двугранного угла по условию взаимно перпендикулярны, следовательно, АА1 перпендикулярно плоскости, которой принадлежит т.В, и ВВ1 перпендикулярно плоскости, которой принадлежит т.А.
ВА1В1 прямоугольный.
ВА1=А1В1+ВВ1=36+49=85
Отрезок АА1 перпендикулярен плоскости, которой принадлежит т. В, он перпендикулярен любой прямой, проходящей через его основание А1 (свойство).
ВАА1 - прямоугольный
По т.Пифагора
АВ=АА1+ВА1=25+85=110
АВ=110