Высота основания правильной треугольной пирамиды равна 3 см. а угол между боковой гранью и основанием пирамиды равен 45 градусов.надо найти площадь полной поверхности пирамиды
1)Сначала найдём радиус описанной около шестиугольника окружности. Для этого строим треугольник АОВ(рисунок прилагается). ОВ(радиус) гипотенуза. ОВ=\frac{AB}{sin AOB} = \frac{0,5a}{\frac{1}{2}}=a . Значит радиус равен стороне шестиугольника. 2) Далее строим ВОС(так же на рисунке). Значит ВС= ОВ* tg BOC=а*√3; 3)Но сторона треугольника в 2 раза больше ВС, значит b(сторона треугольника)=(2√3)*а. Тогда сторона треугольника относится к стороне шестиугольника, как \frac{2\sqrt{3}a}{a}=2√3. ответ:как 2√3 к 1
Если соединить точки на серединах сторон треугольника, то получим средние линии каждой из сторон. Средней линией треугольника называется отрезок, соединяющий средины двух его сторон Средняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьей стороне и равна ее половине Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны. Поскольку каждая сторона меньшего треугольника равна половине параллельной стороны большего, их отношение равно 1:2 и коэффициент подобия k равне 1/2 или 2, если считать отношение большей стороны к параллельной ей стороне меньшего треугольника, равное 2:1.
Треугольник - равносторонний
S= 9 * √3/4
Найдем высоту, чтобы вычислить площадь боковой грани
Угол OMK=45
OK / MK = cos 45
OK / MK = √2/2
OK=R(радиусу вписанной окружности)
OK = √3/6 a
OK = √3/6 * 3 = √3/2
OK / MK = √2/2
√3/2 / MK = √2/2
MK = √3/√2
Вычислим площадь боковой грани:
S боковой грани = 1/2 * 3√( 3/2 )
S = 9√3/4 + 3/2 √( 3/2 )