Ромб - это параллелограмм, у которого все стороны равны (докажите сами). То есть ромб является параллелограммом.
<AOE = <ACB (как соответственные углы при ||-ных прямых OE и BC и их секущей AC).
Тогда треугольники ACB и AOE подобны по двум углам (<A=<A, <AOE=<ACB),
тогда их стороны пропорциональны, то есть:
AC/AO = BC/EO = AB/AE. (*)
Треугольники AOB и COD равны (докажите сами), тогда
AO = CO, тогда
AC/AO = (AO+CO)/AO = 2AO/AO = 2.
Тогда из (*):
2 = BC/EO, отсюда EO = (1/2)*BC,
Но у ромба все стороны равны, то есть BC = DC, поэтому
EO = (1/2)*BC = (1/2)*DC.
Ч. т. д.
2. Вспомни теорему Пифагора и опускай перпендикуляры вниз от каждого вектора-отрезка, чтобы потом по этой теореме можно было посчитать их численное значение. Т.е. просто дострой до прямоугольного треугольника каждый вектор другими отрезками (я их карандашом выделил). И посчитай значение каждого вс карандашом) отрезка по клеточкам...
3. Теперь надо по теореме Пифагора считать численное значение каждого основного из трёх векторов-отрезков (которые ручкой), которые будут являться гипотенузами в соответствующих треугольниках.
4. В основном большом треугольнике (ручкой) известны все стороны (основные векторы-отрезки) - по теореме косинусов, используя все стороны этого треугольника, можно найти один из его углов. Пусть это будет угол искомый - между BA и BC.
Посчитав, получил примерно 37,94°. Очень большие числа были, раза 4 проверил всё. И даже транспортиром вручную измерил в конце угол: около 38°. Так что точно правильно.
Если что-то неясно-непонятно, пиши, я всегда на связи.