Высота горы ≈ 0,683 км ≈ 683 м. Объяснение: Дано: ΔABC; ВС - высота горы; ∠BAC = 30°; ∠BDC = 45°; AD = 0,5 км. Найти высоту горы BC. Решение. 1) Расстоянием от точки до прямой является длина перпендикуляра, опущенного из этой точки на прямую. ⇒ BC⊥AC, ΔABC прямоугольный, ∠С = 90°, высота горы - катет BC. 2) В ΔABC ∠BAC = 30° (по условию), ∠ACB = 90°, тогда ∠ABC = 180° - 30° - 90° = 60°. Обозначим для удобства высоту горы катет ВС = x. В прямоугольном треугольнике катет, лежащий против угла 30° равен половине гипотенузы ⇒ гипотенуза AB = 2x км. 3) В ΔDBC ∠BDC = 45° (по условию), ∠DCB = 90°, тогда ∠DBC = 180° - 90° - 45° = 45°. ⇒ ΔDBC равнобедренный, так как имеет два равных угла ⇒ DC = BC = x км. 4) Тогда в ΔABC сторона AC = x + 0,5 км. Из ΔABC найти BC можно двумя По теореме Пифагора:
11. Вроде как сумма всех внешних углов равна 900 градусов. (360*3-180(сумма всех внутренних углов треугольника). 360-60 = 300 - внешний угол того что 60 градусов. 900 - 300 = 600 градусов осталось. Т.к. один в двое больше другого, то они равны 200 и 400 соответственно. А разность = 200 градусов.
12. Если это диаметры одной и той же окружности (а как известно диаметр проходит через центр) то они не могут быть параллельны.
13. , где x и y углы.
14. представим угол А за Х; x + 5х + x + 40 = 180; 7x = 140; x = 20 градусов. соответственно угол А = 20; угол В = 60 градусов, а угол С = 100 градусов.
15. Так как BD - это высота, то углы BDC и BDA прямые. Также BD - биссектриса угла MDH. Следовательно углы HDC и MDA равны. А так как треугольник ABC - равнобедренный, то и отрезки HC и MA равны. Но все равно желательно нарисовать.
16. Общий угол при пересечении прямых = 180 градусов. Значит второй угол у одной из параллельных прямых равен 180 - 112 = 68 градусов. У второй параллельной прямой то же самое только зеркально отображено. Тоже желательно нарисовать.
17. Треугольник АВС является равнобедренным. А у него углы у основания одинаковые. А так как углы CAD и BAC равны, то можно прийти к выводу что и стороны у этой фигуры равны. Но это не обязательно квадрат.
Объяснение:
ΔABC - равнобедренный и прямоугольный, его высоту СH можно найти через площадь
Катеты АC=ВС = 8 см
гипотенуза по Пифагору
AB=√(АC²+ВС²) = √(2*8²) = 8√2
Площадь через катеты
S = 1/2*АC*ВС = 1/2*8*8 = 32 см²
г) Площадь через высоту
S = 1/2 AB*CH
CH = 2S/AB = 64/(8√2) = 8/√2 = 4√2 см
И в прямоугольном треугольнике CHM по теореме Пифагора
HM² = CH²+CM² = 16*2+16*7 = 16*9
HM = √(16*9) = 4*3 = 12 см