Объяснение:
Вспомним теорему о сумме углов, прилежащих к боковой стороне трапеции:
Углы, прилежащие только к боковой стороне трапеции, в сумме составляют 180°.
В этой задаче у нас фигурируют части. Складываем части:
3 + 2 = 5 частей - всего.
Теперь давайте найдем, сколько градусов приходится на каждую часть.
Для этого 180° разделим на 5 частей.
180° : 5 = 36° - приходится на каждую часть.
Теперь 36° умножаем на 2 и 3.
36° * 2 = 72° - меньший угол трапеции;
36° * 3 = 108° - больший угол трапеции.
Задача решена.
Окружность проходит через середины сторон треугольника.
Следовательно она является описаной окружностью для треугольника
составленного из средних линий (отрезков соединяющих середины сторон треугольника) исходного треугольника
Длины средних линий найти просто это половина сторон исходного треугольника
. Исходный треугольник 6, 25, 29
Треугольник из средних линий 3; 12,5; 14,5.
Радиус описанной окружности определяется по формуле
R =a*b*с/(4корень(p(p-a)(p-b)(p-c))).
где p=(a+b+с)/2
У нас а=3;b=12,5; c=14,5
p =(3+12,5+14,5)/2=30/2=15
Находим радиус
R =3*12,5*14,5/(4*корень(15(15-3)(15-12,5)(15-14,5)))=
= 543,75/(4*корень(15*12*2,5*0,5))= 543,75/(4*15)=9,0625