Найдём расстояния между точками, это и будут стороны треугольника.

Три точки всегда лежат только в одной плоскости, задача свелась к обычной планиметрии, мы знаем три стороны треугольника. Надо найти углы, периметр и площадь.

H∈BC; AH⊥BC; ΔABC - равнобедренный, поэтому высота будет и медианой, и биссектрисой.

В прямоугольном ΔAHC, катет AH в два раза меньше гипотенузы AC, поэтому угол лежащий напротив катета AH равен 30°, то есть ∠С = 30°.
∠B = ∠C = 30°. ∠A = 180° - 30° - 30° = 120°.
ответ: ∠A = 120°; ∠B = 30°; ∠C = 30°;
Периметр: 2√2 · (2+√3);
Площадь: 2√3.
а - сторона ромба
периметр
Р = 4а = 52
а = 52/4 = 13 см
Диагонали ромбы d1 и d2 перпендикулярны =>
d1 / d2 = 5 / 12 или d1 = 5d2 / 12
Cтороны прямоугольных треугольников, образуемых диагоналями,будут ^
d1/2, d2/2 -катеты
а - -гипотенуза (она же сторона ромба)
По теореме пифагора
(d1/2)^2 + (d2/2)^2 = a^2
d1^2 + d2^2 = 4a^2
(5d2 /12)^2 + d2^2 = 13^2
25d2^2 + 144d2^2 = 13^2 * 12^2
169d2^2 = (13^2*12^2
13^2 d2^2 = 13^2 * 12^2
d2^2 = 12^2
d2 = 12 см - вторая диагональ
d1 = 5d2 / 12 = 5 * 12 / 12 = 5 - первая диагональ
ответ: диагонали d1=5 cм, d2 = 12 см