Формула для нахождения площади трапеции через четыре стороны: {S=\dfrac{a+b}{2}\sqrt{c^2-\Big(\dfrac{(a-b)^2+c^2-d^2}{2 (a-b)}\Big)^2}} , где a, b — основания трапеции, c, d — боковые стороны трапеции.
Можно применить разделение трапеции на 2 фигуры.
Если провести из точки С отрезок, равный и параллельный стороне АВ, то получим параллелограмм и треугольник с известными сторонами 17, 25 и 28.
По формуле Герона находим площадь треугольника.
Полупериметр р = 35 . S = √(35*18*10*7) = 210.
Находим высоту треугольника (она же высота трапеции).
Если ВА⊥АD, то ∠А=90(по опр.перпендикуляра), и ∠В=90, так как ВА⊥ВС, так как ВС∫∫АD(по св-ву парал. прямых) ⇒ АВСD - прямоугольная трапеция( по опр.). Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6. Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ) Найдем основание трапеции: АМ+МD 6+6=12
) Построение равнобедренного треугольника по основанию и боковой стороне. 1. Проводим прямую "а". 2. Замеряем циркулем длину данного нам основания. 3. Откладываем на прямой "а" от произвольной точки А отрезок АС, равный данному основанию. 3. Замеряем циркулем длину данной нам боковой стороны. 4. Устанавливаем ножку циркуля в точку А и радиусом, равным АВ, делаем дугу над прямой "а". 5. Устанавливаем ножку циркуля в точку С и радиусом, равным АВ, делаем дугу над прямой "а" до пересечения ее с первой дугой, получая точку пересечения В. 6. Соединяем точки А,В и с. Получен искомый треугольник. 2) Этот же алгоритм и для построения треугольника по трем сторонам. Только в пунктах 1,2 и 3 откладываем на прямой "а" ПЕРВУЮ сторону треугольника. В пункте 4 работаем со ВТОРОЙ стороной, то есть устанавливаем ножку циркуля в точку А и радиусом, равным длине ВТОРОЙ стороны, делаем дугу над прямой "а". В пункте 5 работаем с ТРЕТЬЕЙ стороной, то есть устанавливаем ножку циркуля в точку С и радиусом, равным длине ТРЕТЬЕЙ стороны, делаем дугу над прямой "а" до пересечения ее с первой дугой, получая точку пересечения В.
Есть формула:
Формула для нахождения площади трапеции через четыре стороны: {S=\dfrac{a+b}{2}\sqrt{c^2-\Big(\dfrac{(a-b)^2+c^2-d^2}{2 (a-b)}\Big)^2}} , где a, b — основания трапеции, c, d — боковые стороны трапеции.
Можно применить разделение трапеции на 2 фигуры.
Если провести из точки С отрезок, равный и параллельный стороне АВ, то получим параллелограмм и треугольник с известными сторонами 17, 25 и 28.
По формуле Герона находим площадь треугольника.
Полупериметр р = 35 . S = √(35*18*10*7) = 210.
Находим высоту треугольника (она же высота трапеции).
h = 2S/28 = 2*210/28 = 15.
ответ: Sтрап = 16*15 + 210 = 240 + 210 = 450 кв.ед.
Объяснение: