1) Сумма смежных углов параллелограмма равна 180°. Пусть 1 часть -х , тогда 19х+53х=180, 72х=180,х=2,5 меньший угол равен 19*2,5=47,5 больший угол равен 53*2,5=132,5 2) Пусть меньшая сторона параллелограмма равна х , а большая 9+х . Периметр (х+9+х)*2=62, (2х+9)*2 =62, 4х+18=62, 4х=44,х=11 Меньшая сторона параллелограмма равна 11 3) Периметр (3х+7х)*2=20, 20х =20,х=1 большая сторона равна 7*1=7 4) Сумма 2- х противоположных углов равна 140 ( смежных не может быть , так как их сумма 180) . Противоположные углы равны. 140:2=70. 180-70=110- больший угол
AB =BC ; ∠A= ∠C =α =45° , OH =d =3 см ; ∠SAO=∠SBO=∠SCO=β=30°. --- V - ?
V =(1/3)Sосн *H =(1/3)S(ABC)*SO.
Если все боковые ребра (SA,SB ,SC) пирамиды образуют с плоскостью основания ABC равные углы (в данном случае β), то высота проходит через центр окружности описанной около основания. HO - серединный перпендикуляр стороны AB: OH⊥AB,AH =BH =AB/2; ||OH =d ||.
∠B =180°-2α ; R =d/sin(∠B/2) = d/sin(90°-α)=d/cosα. SO= R*tqβ =(d/cosα)*tqβ = (tqβ /cosα)* d . AB =2*OH*tqα=2d*tqα. S(ABC) =(1/2)*AB²*sin∠B = (1/2)*4d²*tq²α*sin(180°-2α)= 2d²*tq²α*sin2α= 2d²*tq²α*2sinα*cosα= 4d²*sin³α/cosα.
V =(1/3)S(ABC)*SO. V=(1/3)*4d²*sin³α/cosα*(tqβ /cosα)*d =(4/3)*sinα*tq²α**tqβ*d³.
Eсли α =45°, β=30°,d=3 см ,то : V=(4/3)*(√2/2)*(1²)*(1/√3)*3³=6√6.
AB=x, AC=2√3 x
BC^2 =AB^2 +AC^2 -2 AB*AC cosA (теорема косинусов) =>
28 =x^2 +12x^2 -2* x *2√3 x *√3/2 => 28 =7x^2 => x=2
AB=2, AC=4√3