ответ: два решения (одно для остроугольного треугольника, другое для тупоугольного...)
1) Р = 256 (см)
2) Р = 56V21 (см)
Объяснение: треугольник АВС, основание ВС=2а (чтобы не возиться с дробями); АВ=АС=b
P = 2a+2b = 2(a+b)
а=b*cos(B); по т.синусов: b=2R*sin(B)
S = 2a*h/2 = ah; h = b*sin(B)
S = P*r/2 = (a+b)*r
(a+b)*r = ab*sin(B)
b(1+cos(B))*r = b*b*sin(B)*cos(B)
(1+cos(B))*r = 2R*sin^2(B)*cos(B)
r/(2R) = (1-cos(B))*cos(B)
обозначим х=cos(B)
x^2 - x + (6/25) = 0
(5x)^2 - 5*(5x) + 6 = 0
по т.Виета корни (3) и (2)
5х=3 ---> х = 0.6
---> sin(B) = V(1-0.36) = 0.8 или
5х=2 ---> х = 0.4
---> sin(B) = V(1-0.16) = 0.2V21
b = 2*50*0.8 = 80 или
b = 2*50*0.2V21 = 20V21
a = 80*0.6 = 48 или
а = 20V21*0.4 = 8V21
P = 2*(80+48) = 128*2 = 256 или
Р = 2*(20+8)*V21 = 56V21
Если вспомнить, что величина, умноженная на корень из двух, это в то же время формула диагонали квадрата d=а√2 и гипотенузы равнобедренного прямоугольного треугольника, то нетрудно будет узнать величину искомого угла.
Соедимим концы В и С хорды с центром окружности.
Радиусы окружности и хорда образуют прямоугольный равнобедренный треугольник СОВ
( см. рисунок вложения).
Выбрав на дуге ВС произвольно точку А, соединим ее с В и С.
∠ ВАС вписанный и равен половине центрального угла ВаС.
∠ВаС=360°-90°=270°, следовательно,
∠ВАС=270°:2=135°
Отметим, что величина этого угла не зависит от местоположения точки А по отношению к В и С.
∠ВАС=∠ВА₁С, как и любому углу, вершина которого будет лежать на этой же дуге, а концы угла опираться на дугу ВаС.
5
Объяснение:
|AB|=корень из ((4-7)^2+(5-1)^2)
|AB|=корень из (9+16)=корень из25=5