[ч у д о в и й ж о в т и й к о л і р п о д е к у д и н а к і н ц я х х м а р о к л и с н и т ' т о ж о в т о г а р а ч и м с в і т о м т о р о ж е в и м] [с о н ц е б е з п р о м і н: я ч е р в о н е н е н а ч е з ж а р у а л е ж о в т и й с в і т о д х м а р о д б и в а є й к и д а є й а с н и й с в і т н а ш и р о к у к а р т и н у] [з а в и ш г о р о д о м с т о ї т ь н а д н і п р і с и з а а л е з ж о в т и м с у т і н к о м і м л а]
b=6-2k 3=-2k+6-2k3=-4k+6-4k=-3k=0,75 b=6-1,5=4,5 ответ: у=0,75х+4,5 В декартовых координатах каждая прямая определяется уравнением первой степени и, обратно, каждое уравнение первой степени определяет прямую.Уравнение вида (1)называется общим уравнением прямой.Угол , определяемый, как показано на рис., называется углом наклона прямой к оси Ох. Тангенс угла наклона прямой к оси Ох называется угловым коэффициентом прямой; его обычно обозначают буквой k:Уравнение называется уравнением прямой с угловым коэффициентом; k - угловой коэффициент, b - величина отрезка, который отсекает прямая на оси Оу, считая от начала координат.Если прямая задана общим уравнением,то ее угловой коэффициент определяется по формуле.Уравнение является уравнением прямой, которая проходит через точку (, ) и имеет угловой коэффициент k.Если прямая проходит через точки (, ), (, ), то ее угловой коэффициент определяется по формуле.Уравнениеявляется уравнением прямой, проходящей через две точки (, ) и (, ).Если известны угловые коэффициенты и двух прямых, то один из углов между этими прямыми определяется по формуле.Признаком параллельности двух прямых является равенство их угловых коэффициентов:.Признаком перпендикулярности двух прямых является соотношение, или .Иначе говоря, угловые коэффициенты перпендикулярных прямых обратны по абсолютной величине и противоположны по знаку.
[ч у д о в и й ж о в т и й к о л і р п о д е к у д и н а к і н ц я х х м а р о к л и с н и т ' т о ж о в т о г а р а ч и м с в і т о м т о р о ж е в и м] [с о н ц е б е з п р о м і н: я ч е р в о н е н е н а ч е з ж а р у а л е ж о в т и й с в і т о д х м а р о д б и в а є й к и д а є й а с н и й с в і т н а ш и р о к у к а р т и н у] [з а в и ш г о р о д о м с т о ї т ь н а д н і п р і с и з а а л е з ж о в т и м с у т і н к о м і м л а]