Медиана bm и биссектриса ap треугольника abc пересекаются в точке k, длина стороны ac втрое больше длины стороны ab. найдите отношение площади треугольника akm к площади четырёхугольника kpcm.
Дано : ABCD - параллелограмм Пусть ∠A =∠C _острые углы ; AB =BD = 8 ; AC =8√2 .
S(ABCD) -?
Пусть O точка пересечения диагоналей AC и BD. S(ABCD) =4*S(∆ ABO) . * * *т.к. диагонали параллелограмма в точке пересечения делятся пополам* * * Треугольник ABO определен однозначно по трем сторонам и его площадь можно вычислить разными например, по формуле Герона: S(∆ABO) = √p( p-a)(p-b)(p-c) , где p=(a +b+c)/2 _полупериметр . * * *a =AO = AC/2 =4√2 , b=BO =BD/2 =4, c =AB=8 , p =6+2√2 * * * S(∆ABO)=√(6+2√2)(6-2√2)(2√2+2)(2√2-2)=4√(3+√2)(3-√2)(√2+1)(√2+1)=4√7. S(ABCD) =4*S(∆ ABO) =4*4√7=16√7 кв.ед.
Второй
Для параллелограмма : 2(AB² +AD²) =AC²+BD² ; 2(8² +BC²) = (8√2)² +8² ⇒ AD =4√2 . S(ABCD) =AD*h,а высоту h удобно определить из равнобедренного ΔABD . h = √(AB² -(AD/2)²) =√(8² -(2√2)²) =2√2 *√7.
Доказывать будем опираясь на признак параллелограмма (если у четырехугольника противолежащие стороны попарно параллельны, то это параллелограмм). Доказательство: 1) тр АВЕ = тр СДК (по двум сторонам и углу м/д ними), т к в них АВ=СД (АВСД- пар-мм) АЕ=СК ( по условию) уг КСД= уг ЕАВ как внутр накрестлежащие при AB||СД и секущ АС следовательно ВЕ=ДК 2) тр АЕД = тр СКВ (по двум сторонам и углу м/д ними), т к в них АД=СВ (АВСД- пар-мм) АЕ=СК ( по условию) уг ЕАД= уг КСВ (как внутр накрестлежащие при AД||СВ и секущ АС следовательно ВК=ДЕ 3) ЕВКД - параллелограмм по признаку из пп. 1;2
S(amb)=S(bmc) => S(amb = 1/2 S(abc)
Ak - медиана треугольника AMB, так как BK=KM
S(abk)=S(amk)=1/2 S(abm) = 1/4 S(abc)
Проведем ML параллельно AP
ML - средняя линия ACP (так как ML параллельна AP и AM=MC) =>PL=LC
KP - средняя линия BMP=>PL=PB
PL=LC; PL=PB =>PL=LC=PB
S(bkp)/ S(mbc)= 1/2* sinB * BK* BP/1/2* sinB * BM*BC ( при этом мы знаем, что BK=1/2 BM и BP = 1/3 BC)=> S(bkp)/ S(mbc)=1/6
S(bkp)/ S(mbc)=1/6 => S(cmkp)/ S(mbc)=5/6 => S(cmkp)/ S(abc) = 5/12
S(mbc)/S(cmkp) = 1/4 S(abc)/ 5/12S(abc)= 3/5
P.s решение от krosch5.