ответ: В соответствии с классическим определением, уго� между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
Подробнее - на -
Объяснение:
1)BD высота по условию, значит в треугольник по одному равному углу. Сумма двух других углов=90 градусов. Если ∠CBD больше ∠ABD, то
∠C меньше ∠A⇒ CB больше AB.
2)В треугольнике ВМА угол ВАМ больше угла ВМА. (т.к. в любом треугольнике против большей стороны лежит больший угол и по условию ВМ>АВ)
Для треугольника ВМС угол ВМА является внешним и равен сумме внутренних углов треугольника ВМС, не смежных с ним. Т.е. угол ВМА больше угла ВСМ
Итак угол ВАМ > угла ВМА > угла ВСМ.
Значит, А > C.
3)Угол А в 2 раза меньше внешнего угла ВСК, то есть
∠А=α , ∠ВСК=2α.
Внешний угол треугольника = сумме двух внутренних углов, не смежных с ним. Значит, ∠ВСК=∠А+∠В ⇒ 2α=α+∠В ⇒ ∠В=α .
Получаем треугольник, у которого равны два угла, значит, треугольник равнобедренный ( углы при основании треугольника равны ).
4)7 треугольников
Объяснение: