1. Задача 1. решена пользователем ХироХамаки Новичок (решение в файле)
2. Условие задачи 2. неточное. Должно быть: Основание АС равнобедренного треугольника лежит в плоскости α. Найдите расстояние от точки В до плоскости α, если АВ = 5, АС = 6, а двугранный угол между плоскостью треугольника и плоскостью α равен 60 градусам.
Проведем ВН⊥АС и ВО⊥α. ВО - искомое расстояние. ОН - проекция ВН на плоскость α, значит ОН⊥АС по теореме, обратной теореме о трех перпендикулярах. ∠ВНО = 60° - линейный угол двугранного угла между плоскостью α и плоскостью треугольника. АН = НС = 6/2 = 3 (ВН - высота и медиана равнобедренного треугольника) ΔАВН: по теореме Пифагора ВН = √(АВ² - АН²) = √(25 - 9) = √16 = 4 ΔВНО: ВО = ВН · sin 60° = 4 · √3/2 = 2√3
3. АО⊥α, ОВ и ОС - проекции наклонных АВ и АС на плоскость α, тогда ∠АВО = ∠АСО = 60°. ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит АВ = АС = 6.
В параллелограмме АBCD угол А равен углу С, угол B равен углу D. а) К примеру, возьмем параллелограмм АBCD. Угол А обозначим за Х, угол B за 2Х (т.к один больше другого в 2 раза). Сумма углов одной стороны параллелограмма равна 180 градусам. Следовательно, Х + 2Х = 180, 3Х = 180, Х = 60. Соответственно второй угол будет равен 120 градусам. б) К примеру, возьмем параллелограмм АBCD. Угол А обозначим за Х, угол B за Х-24. Сумма углов одной стороны параллелограмма равна 180 градусам. Следовательно, Х + Х - 24 = 180. 2Х = 156. Х = 78. Следовательно, втрой угол будет равен 76-24 = 52.
Я старалась , лучший ответ