Пусть трапеции ABCD, где прямой угол - А.. Проведём высоту из т. С. Назовём её СО. Бис-са выходит из угла D. Тогда
1)угол DBC=BDA, Тк являбтся накрест лежащимт при прямых BC И AD И секущей BD. Тогда получается, что треуг BD равнобедренный.
2) в ранобедренном трег боковые стороны равны. BC=CD=15см.
3) рассмотрим прямоуг. ABCO. В прямоуг противолежсщие стороны равны. AB=CO=12, BC=AO=20.
4) рассмотрим треуг COD. По теореме Пифагора ОD^2= 225-144=81. Значит OD=9см.
5) AD=20+9=29см.
6) SABCD=(20+29)/2*12=39/2*12=39*6=234 СМ ^2
Проведём осевое сечение конуса с вписанным в него шаром.
Получим равносторонний треугольник с вписанной в него окружностью. При нахождении отношений длину образующей можно принять равной 1.
Sk = So+Sбп
So = πD²/4 = π*1²/4 = π/4 Sбп = πRL = π*(1/2)*1 = π/2
Sk = π4 + π/2 = 3π/4
Радиус шара равен 1/3 высоты треугольника в осевом сечении r = (1/3)Н =
= (1/3)*scrt(1-(1/4)) = scrt3/6 = 1/2scrt3
Sш = 4πr² = 4π*(1/2scrt3)^2= 4π*1/12 = π*/3
Отсюда отношение площади полной поверхности конуса к площади поверхности шара равно (3π/4)/(π/3) = 9/4.