1 замкнутая кривая, все точки к-рой равно удалены от центра.
Центр окружности – это точка, равноудаленная от точек окружности
Прямая линия, соединяющая центр с любой точкой окружности или поверхности шара.
2 Хо́рда в планиметрии — отрезок, соединяющий две точки данной кривой
Хорда, проходящая через центр О, называется диаметром.
3 Окружность называется описанной около треугольника, если она проходит через все его вершины. Центр окружности, описанной около треугольника, является точкой пересечения серединных перпендикуляров к сторонам треугольника.
4 Теорема. Центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров к сторонам треугольника, проведённых через середины этих сторон.
5 Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.
Объяснение:
))
ответ:Коло, описане навколо трикутника
Коло називається описаним навколо трикутника, якщо всі вершини трикутника розміщені на колі.
Центр кола рівновіддалений від усіх вершин, тобто повинен розташовуватися в точці перетину серединних перпендикулярів до сторін трикутника.
Навколо будь-якого трикутника можна описати коло, оскільки серединні перпендикуляри до сторін перетинаються в одній точці.
Для гострокутного трикутника центр кола знаходиться в трикутнику.
Інша ситуація з прямокутним і тупокутним трикутниками.
Коло, вписане в трикутник
Коло називається вписаним у трикутник, якщо всі сторони трикутника дотикаються до кола.
Центр кола рівновіддалений від усіх сторін, тобто повинен розміщуватися в точці перетину бісектрис трикутника.
У будь-який трикутник можна вписати коло, оскільки бісектриси трикутника перетинаються в одній точці.
Оскільки бісектриси кутів трикутника завжди перетинаються всередині трикутника, для всіх трикутників центр уписаного кола розміщується в трикутниках.
У рівностороннього трикутника збігаються бісектриси, медіани та висоти, тобто ці відрізки є також серединними перпендикулярами. Це означає, що центри описаного і вписаного кола збігаються.
Розв'яжи:
1. У прямокутний трикутник ABC вписано коло, ∠B — прямий. Обчисли кути трикутника A та C, а також кути, що виходять з центра кола, якщо один з них ∠ FOE = 146°.
Відповідь:
∠ A=___ °
∠ C= ___°
∠EOD =___ °
∠FOD =___ °
2. Знайди трикутник, у який вписане коло.
Відповідь: 1) DEF, 2) STU, 3) ABC, 4) KLM, 5)EFG, 6) PRT.
Знайди трикутники, навколо яких описано коло.
Відповідь: 1) ABC, 2) KLM, 3) PRT, 4) DEF, 5) MNL, 6) EFG.
Домашнє завдання.03.04.2020 р. Скласти конспект параграфа 24.
Домашнє завдання.08.04.2020 р. Повторити параграф 24. Виконати вправи № 641, № 649.
Объяснение:Обозначим измерения данного параллелепипеда буквами x, y и z. ТОгда условия задачи можно записать следующим образом:
x * y = 12,
x * z = 15,
y * z = 20.
Из первого уравнения получаем, что y = 12/x.
Из второго уравнения получаем, что z = 15/x.
Подставим полученные значения в третье уравнение:
12/х * 15/x = 20,
180/х² = 20,
20 * х² = 180,
x² = 9,
х = 3 (см).
Тогда y = 12/3 = 4 (см) и
z = 15/3 = 5 (см).
Таким образом объём данного параллелепипеда равен:
V =x * y * z = 3 * 4 * 5 = 60 cм³.