Ну, первая проще некуда - умножаем 4*6 - это площадь одной боковой стороны, и еще умножаем на 4(стороны) Итого 4*6*4=96см^2
2. по апофеме и высоте вычисляем половину длины стороны основания пирамиды. Это по формуле (10^2-8^2) и все это под корнем. получается 6, еще умножаем на 2=12 (сторона основания)
далее вычисляем площадь по формуле: S=(1/2)PL+Sосн, где Р-периметр основания (12*4=48), L-апофема, Sосн-площадь основания (12*12=144). Итого (1/2)*48*10+144=384см^2
3 не знаю до конца, можно вычислить верхние и нижние диагонали по той же формуле, что и в пред. задаче, получается 8корней из 2 и 18корней из 2 соответственно. Если найдешь высоту усеченной пирамиды, можно будет узнать площадь сечения.
1)
а) (3; 3)
б) АВ(2; 8) |AB|=√4+64=√68=2√17
c) -1=2k+b|*2
7=4k+b
-2=4k+2b
7=4k+b
-9=b
2k=-1-b=8
k=4
y=4x-9
2)(0;0 )
б)CD(-6;8) |CD|=√36+64=10
r=5
в)x²+x²=25
3)середина АС (2;1) середина BD(2;1)
ABCD параллелограмм
AB(2;4)|AB|=√20
BC(2;-4)|BC|=√20
CD(-2; -4)|CD|=√20
AD(2; -4)|AD|=√20
AB=BC=CD=AD
ABCD ромб
4) (3;3)
|AB|=√18=3√3
8=4k+b
-2=2k+b
8=4k+b
-4=4k+2b
12=-b
b=-12
k=5
y=5x-12
5)(0;3 )
б)CD(-8;0) |CD|=√64=8
r=4
в)(x+8)²+y²=16
6) AB(-3;-3)|AB|=3√2
BC(2;-2) |BC|=2√2
CD(3;3)|CD|=3√2
AD(2;-2)|AD|=2√2
ABCD параллелограмм
AC(-1;-5)|AC|=√26
BD(5;1)BD=√26
ABCD прямоугольник
x = rt – r sin t,
y = r – r cos t
Точки пересечения циклоиды с прямой, по которой катится окружность (эта окружность называется производящей, а прямая, по которой она катится, – направляющей), называются точками возврата, а самые высокие точки на циклоиде, расположенные посредине между соседними точками возврата, называются вершинами циклоиды.
Первым изучать циклоиду начал Галилео Галилей. Длина одной арки циклоиды была определена в 1658 английским архитектором и математиком Кристофером Реном, автором проекта и строителем купола собора Святого Павла в Лондоне. Оказалось, что длина циклоиды равна 8-ми радиусам производящей окружности.
Одно из замечательных свойств циклоиды, давшее ей название – брахистохрона (от греческих слов «кратчайший» и «время) связано с решением задачи о наискорейшем спуске. Встал вопрос, какую форму надо придать хорошо отшлифованному (чтобы практически исключить трение) желобу, соединяющему две точки, чтобы шарик скатился вниз от одной точки к другой в кратчайшее время. Братья Бернулли доказали, что желоб должен иметь форму опрокинутой вниз циклоиды.
Родственные циклоиде кривые можно получить, рассматривая траектории точек, не находящихся на производящей окружности.
Пусть точка С0 находится внутри окружности. Если провести через С0 вс окружность с тем же центром, что и у производящей окружности, то при качении производящей окружности по прямой АВ маленькая окружность будет катиться по прямой A´В´, но ее качение будет сопровождаться скольжением, и точка С0 описывает кривую, называемую укороченной циклоидой.
Аналогичным образом определяется удлиненная циклоида – это траектория точки, расположенной на продолжении радиуса производящей окружности, при этом качение сопровождается скольжением в противоположном направлении.
Циклоидальные кривые применяются при многих технических расчетах и свойства их используются, например, при построении профилей зубьев шестерен, в циклоидальных маятниках, в оптике и, таким образом, изучение этих кривых важно с прикладной точки зрения. Не менее важно и то, что, изучая эти кривые и их свойства, ученые 17 в. разрабатывали приемы, которые привели к созданию дифференциального и интегрального исчислений, а задача о брахистохроне явилась шагом к изобретению вариационного исчисления.
Поставь как лучший