1) Вписанные углы - угол, вершина которого лежит на окружности, а обе стороны пересекают эту окружность.
2) Вписанный угол равен половине центрального угла, опирающегося на ту же дугу, и равен половине дуги, на которую он опирается, либо дополняет половину центрального угла до 180°.
3) Угол с вершиной в центре окружности называется центральным углом.
4) Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.
5) 180°
6) Внешние углы - это углы, смежные с углами треугольника.
7) Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.
8) S=1/2 a*hª-треугольник. Площадь параллелограмма равна произведению высоты и стороны, к которой проведена высота.
9)
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.