Середня лінія трапеції поділяється діагоналлю на два відрізки, різниця між якими дорівнює 2 см. Менша основа трапеції дорівнює 8 см. Знайдіть більшу основу трапеції.
S=ah (где h-высота; a-сторона, к которой проведена высота).
У нас есть прямая AP, которая со стороной MT образует угол PAM, который равен 90°, а следовательно АР является высотой этого параллелограмма.
Численно нам известна сторона МТ(МТ=7+10=17см), к которой проведена высота АР, но не известна сама высота. Рассмотрим треугольник АРТ, мы знаем, что угол А равен 90°, угол Р равен 45°, значит угол Т=180-90-45=45°; т.к. углы при основании равны, то треугольник является равнобедренным и его боковые стороны равны, а значит АТ=АР=10 см.
Чтобы узнать принадлежит точка окружности или нет, нужно подставить координаты точки в уравнение. А(3;4) 3^2+4^2 - 25 =0? 9+16-25=0 верно, значит точка А принадлежит окружности В(10;3) 10^2 + 3^2-25=0 100+9 -25=0 неверно, значит В не принадлежит окружности С(-1;3) (-1)^2+3^2-25=0, 1+9-25=0 неверно, С не принадлежит окружности Д(0;5) 0^2+5^2-25=0, 0+25-25=0 верно Д принадлежит окружности 2) подставим координаты центра и значение радиуса в уравнение окружности (х - 2)^2 +(y - (-3))^2=2^2, (x - 2)^2 + (y + 3)^2 = 4 - уравнение окружности. А(2; -3) (2 - 2)^2 + (-3 + 3)^2 = 4, 0+0=4 неверно, значит А не принадлежит этой окружности
Объяснение:
170 см²
S=ah (где h-высота; a-сторона, к которой проведена высота).
У нас есть прямая AP, которая со стороной MT образует угол PAM, который равен 90°, а следовательно АР является высотой этого параллелограмма.
Численно нам известна сторона МТ(МТ=7+10=17см), к которой проведена высота АР, но не известна сама высота. Рассмотрим треугольник АРТ, мы знаем, что угол А равен 90°, угол Р равен 45°, значит угол Т=180-90-45=45°; т.к. углы при основании равны, то треугольник является равнобедренным и его боковые стороны равны, а значит АТ=АР=10 см.
Теперь по формуле узнаем площадь: S=17*10=170 см²