У правильного треугольника все стороны равны и каждый из углов равен 60 градусов. Центр вписанной в треугольник окружности лежит в точке пересечения его биссектрисс. Обозначим треугольник АВС, проведём биссектриссу угла А - АЕ и биссектриссу угла В - ВД. Они пересекутся в точке О. Биссектриссы правильного треугольника являются его высотами и медианами, значит ОД - медиана и высота и треугольник АОД - прямоугольный, сторона которого АД=1/2АС=17√3/2. Угол ОАД=60:2=30 градусов, а катет прямоугольного треугольника, лежащий против угла в 30 градусов равен половине гипотенузы, т.е. ОД (это радиус вписанной окружности) = 1/2АО. Обозначим ОД - Х, тогда АО=2Х. По теореме Пифагора: АО²=ОД²+АД² (2Х)²=Х²+(17√3/2)² 4Х²=Х²+867/4 3Х²=867/4 Х²=289/4 Х=17/2=8,5. Значит радиус вписанной окружности =8,5.
1) Cos3x-cos7x=0 <=> -2*sin(3x+7x)/2*sin(3x-7x)/2)=0. Произведение равно нулю, когда один из множителей равен нулю, значит: а) sin5x=0 <=> 5x=π*m <=> x=π*m/5, где m∈Z б) sin(-2x)=0 <=> sin2x=0 <=> 2x=π*k <=> x=π*k/2, где k∈Z
2) Sin3x+cos7x=0 <=> cos(π/2-3x)+cos7x=0 <=> 2*cos(π/2-3x+7x)/2*cos(π/2-3x-7x)/2=0. Произведение равно нулю, когда один из множителей равен нулю, значит: а) cos(π/4+2x)=0 <=> π/4+2x=π/2+π*n <=> 2x=π/4+π*n <=> x=π/8+π*n/2, где n∈Z б) cos(π/4-5x)=0 <=> π/4-5x=π/2+π*s <=> -5x=π/4+π*s <=> x=-π/20-π*s/5, где s∈Z
кут А =180-(35+85)=60°