Точка пересечения диагоналей параллелограмма делит их пополам, значит АО=ОС, BO=OD.
В тр-ке △АМС АМ=МС (из рисунка), значит △АМС - равнобедренный и поскольку АО=ОС, то МО медиана и высота.
В тр-ке △BMD BM=MD (из рисунка), значит △BMD - равнобедренный и поскольку BO=OD, то МО медиана и высота.
Таким образом, МО перпендикулярна и BD и АС, тогда по признаку: "Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в одной плоскости, то она перпендикулярна к этой плоскости" следует, что МО⊥АВС чтд
Если ВА⊥АD, то ∠А=90(по опр.перпендикуляра), и ∠В=90, так как ВА⊥ВС, так как ВС∫∫АD(по св-ву парал. прямых) ⇒ АВСD - прямоугольная трапеция( по опр.). Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6. Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ) Найдем основание трапеции: АМ+МD 6+6=12
Объяснение:
Наугад взял: 2стр. 3й слева, где типа пирамиды.
Точка пересечения диагоналей параллелограмма делит их пополам, значит АО=ОС, BO=OD.
В тр-ке △АМС АМ=МС (из рисунка), значит △АМС - равнобедренный и поскольку АО=ОС, то МО медиана и высота.
В тр-ке △BMD BM=MD (из рисунка), значит △BMD - равнобедренный и поскольку BO=OD, то МО медиана и высота.
Таким образом, МО перпендикулярна и BD и АС, тогда по признаку: "Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в одной плоскости, то она перпендикулярна к этой плоскости" следует, что МО⊥АВС чтд