Откройте файл в отдельном окошке и читайте мои аннотации: 1) Чертим и отмечаем то, что нам известно 2) Здесь мы опускаем высоту CD, которая в равнобедренном треугольнике является и медианой, то есть делит сторону AB на две равные части AD и DB. 3) Находим углы при основании. Поскольку треугольник равнобедренный, то ∠A=∠B. Так же мы сразу видим, что у нас есть 2 прямоугольных треугольника ΔADC и ΔCDB. 4)Когда мы нашли ∠A и ∠B, то с тангенса выражаем высоту, через половину длины основания. 5) Подставляем высоту, выраженную через половину длины основания и тангенса угла, в формулу площади равнобедренного треугольника и, таким образом, вычисляем чему равно основание AB. 6)Теперь в формуле площади ΔACB у нас неизвестная только одна высота CD. Мы можем её найти, что мы и делаем. 7) (На картинке данный пункт отмечен номером 6, как и предыдущий. Опечатка.) Поскольку ΔADC и ΔCDB прямоугольны, то стороны AC и CB являются их гипотенузами, которые равны, так как ΔABC равнобедренный. По теореме Пифагора находим их. 8) Записываем ответ.
Предположим, что у нас есть прямоугольный ΔABC, у которого катеты AB, AC а гипотенуза BC. При этом AB=AC. То есть ∠A=90°. Первый вариант нахождения таков: Сумма углов треугольника = 180°, то есть ∠A+∠B+∠C=180°. Поскольку треугольник равнобедренный, то ∠C=∠B, это означает, что 90°+2∠C=180° Отсюда: 2∠C=180°-90°=90° ∠C=90:2=45° ответ: Углы треугольника: 90°, 45° и 45°. Второй рассуждения основывается на вычислениях и доказывает данное свойство, что углы при основании равны. Обозначим, что AB=AC=x. Тогда по теореме Пифагора: Далее мы используем синус, чтобы найти ∠C и ∠B: Это примерно равно 0,7071 или . В свою очередь при переводе эти данные в градусы, мы получим, что угол равен 45°. Если сделать такое же соотношение у другого угла, то мы получим такой же ответ. Это доказывает, что у равнобедренного треугольника углы при основании одинаковы.
1) Чертим и отмечаем то, что нам известно
2) Здесь мы опускаем высоту CD, которая в равнобедренном треугольнике является и медианой, то есть делит сторону AB на две равные части AD и DB.
3) Находим углы при основании. Поскольку треугольник равнобедренный, то ∠A=∠B.
Так же мы сразу видим, что у нас есть 2 прямоугольных треугольника ΔADC и ΔCDB.
4)Когда мы нашли ∠A и ∠B, то с тангенса выражаем высоту, через половину длины основания.
5) Подставляем высоту, выраженную через половину длины основания и тангенса угла, в формулу площади равнобедренного треугольника и, таким образом, вычисляем чему равно основание AB.
6)Теперь в формуле площади ΔACB у нас неизвестная только одна высота CD. Мы можем её найти, что мы и делаем.
7) (На картинке данный пункт отмечен номером 6, как и предыдущий. Опечатка.)
Поскольку ΔADC и ΔCDB прямоугольны, то стороны AC и CB являются их гипотенузами, которые равны, так как ΔABC равнобедренный.
По теореме Пифагора находим их.
8) Записываем ответ.
Надеюсь, что доступно и понятно.