Четырёхугольник ABCD — параллелограмм.
Отрезок АЕ — биссектриса ∠А.
Е ∈ ВС.
ВЕ = 3*ЕС.
ВС = 12 [см].
Найти :Р(ABCD) = ?
Решение :Пусть ЕС = х, тогда, по условию задачи, ВЕ = 3х.
ВС = ВЕ + ЕС
12 [см] = 3х + х
4х = 12 [см]
х = 3 [см].
ВЕ = 3х = 3*3 [см] = 9 [см].
Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник.Следовательно, ∆АВЕ — равнобедренный (причём ВЕ = АВ = 9 [см]).
Периметр параллелограмма равен удвоенной сумме его смежных сторон.Следовательно, Р(ABCD) = 2*(AB + BC) = 2*(9 [см] + 12 [см) = 2*21 [см] = 42 [см].
ответ :42 [см].
искомое сечение - симметричный четырехугольник BPKL
диагонали PL , BK пересекаются под углом 90 град
по условию
стороны основания AB=BC=CD=AD =3
боковые ребра MA=MB=MC=MD =8
точка К - середина ребра MD ; KD = MD /2 = 8/2=4
ABCD -квадрат
диагональ AC = BD = 3√2
пересечение диагоналей точка F : BF =FD = BD/2 =3√2 /2 =1.5√2
BK - медиана треугольника MBD
длина медианы BK = 1/2 √(2 BM^2 +2 BD^2 - MD^2 ) =1/2 √(2*8^2 +2*(3√2)^2 - 8^2 ) =5
по теореме косинусов
cos KBD = ( KD^2 - (BK^2+BD^2) )/ (-2*BK*BD)= ( 4^2 - (5^2+(3√2)^2) )/ (-2*5*3√2)= 9/(10√2)
MF - высота
треугольник EBF - прямоугольный
BE = BF / cos KBD = 1.5√2 / [ 9/(10√2)] = 10/3
по теореме Пифагора EF =√(BE^2 - BF^2) =√( (10/3)^2 - (1.5√2)^2) =√238/6
MF - высота
треугольник MFB - прямоугольный
по теореме Пифагора MF =√( MB^2 -BF^2) =√( 8^2- (1.5√2)^2 ) =√238/2
ME =MF -EF =√238/2- √238/6= √238/3
треугольники MPL ~ MCA подобные
PL / AC = ME /MF ; PL = AC * ME /MF = 3√2 * √238/3 /√238/2 =2√2
площадь сечения(четырехугольника BPKL)
Sс = PL*BK *sin<BEP /2 = 2√2*5*sin90 /2 = 5√2
ответ 5√2