Начертите треугольник АВС. На сторонах АВ и ВС гнужно ответить точки М(на АВ) и Р(на ВС) так что бы сторона АС || МР. У вас получиться 2 треугольника: АВС и МРВ: Решение: Рассмотрим треугольники АВС и МРВ: <В- общий угол; <А=<РМВ- как соответствующие углы при АС||МР и секущей АВ <В=<МРВ - как соответствующие углы при АС||МР и секущей ВС Значит ΔАВС~ΔМРВ (подобен) по трём углам От сюда следует что стороны этих треугольников пропорциональны, а их площади относятся как коэффициент подробности в квадрате: АС/МР=АВ/МВ=ВС/РВ Подставим значения в первые 2 отношения и найдём АС: АС/28=16/14 По правилу пропорции найдём АС= АС=(28*16)/14=(2*16)/1=32см S(ABC)/S(MPB)=(AC/MP)^2=(32/28)^2=(8/7)^2=64/49 ответ: АС=32см; S(ABC)/S(MPB)=64/49
Сторона ромба равна 28:4=7, Тупые углы по 180-60=120 Проводим диагональ из тупого угла. Образовавшиеся углы по 60Есть 2а решения1) Рассмотрим треугольник, образованный 2-я сторонами и диагональю. Угол между Сторонами равен 60 по условию. Sin 60 равен 0,866 Находим площать этого треугольника по формуле S= 1/2 ab* Sin между ab Получается 1/2*7*7*0,866= примерно 21 Умножаем на 2, т.к. ромб состоит из 2-х таких треугольников, получается примерно 42 (если точно, то 42,434) 2) Проведем высоту из вершины угла 60 на диагональ. Получаем прямоугольный треугольник с углами 30 и60. Находим сторону напротив угла 30 (половина диагонали из тупого угла) сторона ромба* на синус 30= 7*1/2=3,5 Находим по теореме Пифагора последнюю сторону- примерно 6 см. Далее находим площадь S=1/2 a*h получаем 3,5.6*1/2= 10,5 Умножаем на 4-е (т.к в ромбе 4 таких треугольника) получаем 10,5*4= 42
объем=площадь*боковое ребро. 3*9=27